refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 105 results
Sort by

Filters

Technology

Platform

accession-icon GSE15417
Depletion of Erk1 and Erk2 MAP kinases in primary human keratinocytes
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We assessed the effect of RNAi-mediated MAP kinase cascade signaling blockade in primary human keratinocytes. Two sets of siRNA targeting different regions of the Erk1/2 genes were used, enabling identification of off-target siRNA effects.

Publication Title

Erk1/2 MAP kinases are required for epidermal G2/M progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5850
Microarray analysis of NL and PCOS oocytes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by increased ovarian androgen production, arrested follicle development, and is frequently associated with insulin resistance. These PCOS phenotypes are associated with exaggerated ovarian responsiveness to FSH and increased pregnancy loss. To examine whether the perturbations in follicle growth and the intrafollicular environment affects development of the mature PCOS oocyte, genes that are differentially expressed in PCOS compared to normal oocytes were defined using microarray analysis. This analysis detected approximately 8000 transcripts. Hierarchical clustering and principal component analysis revealed differences in global gene expression profiles between normal and PCOS oocytes. 374 genes had a statistically-significant increase or decrease in mRNA abundance in PCOS oocytes. A subset of these genes was associated with chromosome alignment and segregation during mitosis and/or meiosis, suggesting that increased mRNAs for these proteins may negatively affect oocyte maturation and/or early embryonic development. Of the 374 differentially expressed genes, 68 contained putative androgen receptor, retinoic acid receptor, and/or peroxisome proliferating receptor gamma binding sites, including 9 of the genes involved in chromosome alignment and segregation. These analyses demonstrated that normal and PCOS oocytes that are morphologically indistinguishable and of high quality exhibit different gene expression profiles. Furthermore, altered mRNA levels in the PCOS oocyte may contribute to defects in meiosis and/or mitosis which might impair oocyte competence for early development and therefore contribute to poor pregnancy outcome in PCOS.

Publication Title

Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14786
Gene expression analysis of cancer-related fatigue in whole blood from breast cancer survivors
  • organism-icon Homo sapiens
  • sample-icon 319 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Cancer-related fatigue is one of the most frequent complaints among breast cancer survivors, with a major negative impact on general life. However, the etiology behind this syndrome is still unraveled. Gene expression analysis was performed on whole blood samples from breast cancer survivors classified as either fatigued or non-fatigued at two consecutive time points. The analysis identified several gene sets concerning plasma and B cell pathways as different between the fatigue and non-fatigue groups, suggesting that a deregulation in these pathways might underlie the fatigue syndrome. The fatigue group also showed a higher mean level of leucocytes, lymphocytes and neutrophiles compared with the non-fatigue group, thus further implicating the immune system in the biology behind the fatigue syndrome.

Publication Title

Alterations of gene expression in blood cells associated with chronic fatigue in breast cancer survivors.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE16447
Expression array analysis in patients with neuroaxonal injury in cerebral palsy
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have analysed a family with an autosomal recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship.

Publication Title

Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE64003
A human pluripotent stem cell model of FSHD-affected skeletal muscles
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Facioscapulohumeral muscular dystrophy (FSHD) represents a majorunmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies.Wedeveloped a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response and cell adhesion. This cellularmodelwill be a powerful tool for studying FSHDandwill ultimately assist in the development of effective treatments for muscular dystrophies.

Publication Title

A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58644
The prognostic ease and difficulty of invasive breast carcinoma
  • organism-icon Homo sapiens
  • sample-icon 319 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Breast carcinoma (BC) have been extensively profiled by high-throughput technologies for over a decade, and broadly speaking, these studies can be grouped into those that seek to identify patient subtypes (studies of heterogeneity) or those that seek to identify gene signatures with prognostic or predictive capacity. The shear number of reported signatures has led to speculation that everything is prognostic in BC. Here we show that this ubiquity is an apparition caused by a poor understanding of the inter- relatedness between subtype and the molecular determinants of prognosis. Our approach constructively shows how to avoid confounding due to a patient's subtype, clinicopathological or treatment profile. The approach identifies patients who are predicted to have good outcome at time of diagnosis by all available clinical and molecular markers, but who experience a distant metastasis within five years. These inherently difficult patients (~7% of BC) are prioritized for investigations of intra-tumoral heterogeneity.

Publication Title

The prognostic ease and difficulty of invasive breast carcinoma.

Sample Metadata Fields

Age, Disease stage, Time

View Samples
accession-icon GSE30654
Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and their Differentiated Derivatives
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives.

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line, Subject

View Samples
accession-icon GSE30652
Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and their Differentiated Derivatives [Illumina HT12v3 Gene Expression]
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Human pluripotent stem cells (hPSCs) are potential sources of cells for modeling disease and development, drug discovery, and regenerative medicine. However, it is important to identify factors that may impact the utility of hPSCs for these applications. In an unbiased analysis of 205 hPSC and 130 somatic samples, we identified hPSC-specific epigenetic and transcriptional aberrations in genes subject to X chromosome inactivation (XCI) and genomic imprinting, which were not corrected during directed differentiation. We also found that specific tissue types were distinguished by unique patterns of DNA hypomethylation, which were recapitulated by DNA demethylation during in vitro directed differentiation. Our results suggest that verification of baseline epigenetic status is critical for hPSC-based disease models in which the observed phenotype depends on proper XCI or imprinting, and that tissue-specific DNA methylation patterns can be accurately modeled during directed differentiation of hPSCs, even in the presence of variations in XCI or imprinting.

Publication Title

Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE15471
Whole-Tissue Gene Expression Study of Pancreatic Ductal Adenocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression analysis of 36 pancreatic ductal adenocarcinoma tumors and matching normal pancreatic tissue samples from pancreatic cancer patients of the Clinical Institute Fundeni (ICF) using Affymetrix U133 Plus 2.0 whole-genome chips.

Publication Title

Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE38834
Differential gene expression profiling of cultured neu-transformed versus spontaneously-transformed rat cholangiocytes and of corresponding cholangiocarcinomas
  • organism-icon Rattus norvegicus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Characterization of preclinical models of intrahepatic cholangiocarcinoma progression that reliably recapitulate altered molecular features of the human disease. Here, we performed comprehensive gene expression profiling of cholangiocarcinoma tumors arising from bile duct inoculation of different grade malignant rat cholangiocytes.

Publication Title

Differential gene expression profiling of cultured neu-transformed versus spontaneously-transformed rat cholangiocytes and of corresponding cholangiocarcinomas.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact