Recently global gene expression profiling of patients samples lead to a molecular definition of Burkitt Lymphoma (BL) with lymphocyte enhancer-binding factor 1 (LEF1) as a signature gene. Here we report the discovery of nucleic LEF1 in a very high proportion of BL cases (15/18) and LEF1 target genes. Germinal center B cells were devoid of detectable nuclear LEF1 expression as mantle cell lymphoma (0/5), marginal zone lymphoma (0/6), follicular lymphoma (0/12) or diffuse large B cell lymphoma (DLBCL) (1/31). Using whole genome gene expression profiling after transient knockdown of LEF1 in BL cell lines, new LEF1 target genes were identified. The joint expression of these genes in primary BL samples shows that LEF1 is not only expressed aberrantly in BL but also transcriptionally active. Our study identified aberrantly expressed LEF1 and its target genes suggesting an important functional role in BLs.
Aberrant lymphocyte enhancer-binding factor 1 expression is characteristic for sporadic Burkitt's lymphoma.
Cell line
View SamplesPrimary murine hepatocytes were transfected with siRNA targeting Caveolin-1 directly after attachment (o/n). Next day, cells were treated with TGF-beta for 48 h. Experiment was performed in triplicate using primary cells from 3 donor mice.
Caveolin-1 Impacts on TGF-β Regulation of Metabolic Gene Signatures in Hepatocytes.
Treatment
View SamplesSpinal muscular atrophy (SMA) is one of the most common inherited forms of neurological disease leading to infant mortality. Patients exhibit selective loss of lower motor neurons resulting in muscle weakness, paralysis, and often death. Although patient fibroblasts have been used extensively to study SMA, motor neurons have a unique anatomy and physiology which may underlie their vulnerability to the disease process. Here we report the generation of induced pluripotent stem (iPS) cells from skin fibroblast samples taken from a child with SMA. These cells expanded robustly in culture, maintained the disease genotype, and generated motor neurons that showed selective deficits compared to those derived from the childs unaffected mother. This is the first study to show human iPS cells can be used to model the specific pathology seen in a genetically inherited disease. As such, it represents a promising resource to study disease mechanisms, screen novel drug compounds, and develop new therapies.
Induced pluripotent stem cells from a spinal muscular atrophy patient.
No sample metadata fields
View SamplesGenomic microarray analysis of adrenergic-deficient (Dbh-/-) vs. wild-type control (Dbh+/+) mouse heart expression at embryonic day 10.5 (E10.5).
Physiological and genomic consequences of adrenergic deficiency during embryonic/fetal development in mice: impact on retinoic acid metabolism.
Specimen part
View SamplesWe are investigating the mRNA expression profiles of human lung cells to gaseous urban mixtures
A toxicogenomic comparison of primary and photochemically altered air pollutant mixtures.
Cell line, Treatment
View SamplesThe effects of constitutively active Hypoxia Inducible Factor (HIF) and inactivated von Hippel-Lindau tumor suppressor gene product (pVHL) were examined in a mouse model. Conditionally expressed, constitutively active HIF-1a and HIF-2a were compared with inactivated pVHL.
Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo.
Specimen part
View SamplesWe explored the effects of dexamethasone and lenalidomide, individually and in combination, on the differentiation of primary human bone marrow progenitor cells in vitro. Both agents promote erythropoiesis, increasing the absolute number of erythroid cells produced from normal CD34+ cells and from CD34+ cells with the types of ribosome dysfunction found in DBA and del(5q) MDS. However, the drugs had distinct effects on the production of erythroid progenitor colonies; dexamethasone selectively increased the number burst-forming units-erythroid (BFU-E), while lenalidomide specifically increased colony-forming units-erythroid (CFU-E). Use of the drugs in combination demonstrates that their effects are not redundant.
Dexamethasone and lenalidomide have distinct functional effects on erythropoiesis.
Specimen part, Treatment
View SamplesThe goal of these studies was to determine the effects of fasting on skeletal muscle mRNA levels in healthy human subjects.
mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass.
Sex, Age, Specimen part, Treatment, Subject
View SamplesOur aim was to identify genes that were differentially expressed in microglia stimulated with Lipopolysaccharide, Luteolin, or both.
Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype.
No sample metadata fields
View SamplesDisruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that is proposed to function as a transcriptional repressor, but, despite numerous studies examining neuronal gene expression in MeCP2 mutants, no coherent model has emerged for how MeCP2 regulates transcription. Here we identify a genome-wide length-dependent increase in the expression of long genes in neurons lacking MeCP2. This gene misregulation occurs in human RTT brains and correlates with onset and severity of phenotypes in Mecp2 mutant mice, suggesting that the disruption of long gene expression contributes to RTT pathology. We present evidence that MeCP2 represses long genes by binding to brain-enriched, methylated CA dinucleotides within genes and show that loss of methylated CA in the brain recapitulates gene expression defects observed in MeCP2 mutants. We find that long genes encode proteins with neuronal functions, and overlap substantially with genes that have been implicated in autism and Fragile X syndrome. Reversing the overexpression of long genes in neurons lacking MeCP2 can improve some RTT-associated cellular deficits. These findings suggest that a function of MeCP2 in the mammalian brain is to temper the expression of genes in a length-dependent manner, and that mutations in MeCP2 and possibly other autism genes may cause neurological dysfunction by disrupting the expression of long genes in the brain. Overall design: Total RNA-seq Data from the visual cortex of wild-type and MeCP2 knockout animals at 8-10 weeks of age
Disruption of DNA-methylation-dependent long gene repression in Rett syndrome.
No sample metadata fields
View Samples