CD4+ T cell differentiation into multiple T helper lineages is critical for optimal adaptive immune responses. This report identified a novel intrinsic mechanism by which PD-1 signaling imparted regulatory phenotype to FoxP3+ Th1 cells (denoted as Tbet+iTregPDL1 cells) and iTregs. Tbet+iTregPDL1 cells were capable of preventing inflammation in murine models of experimental colitis and experimental graft versus host disease. PDL-1 binding to PD-1 imparted regulatory function to Tbet+iTregPDL1 cells and iTregs by specifically downregulating an endolysosomal protease asparaginyl endopeptidase (AEP)
PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells.
Specimen part
View SamplesLong terminal repeat (LTR) elements are wide-spread in the human genome and have the potential to act as promoters and enhancers. Their expression is therefore under tight epigenetic control. We previously reported that a member of the THE1B class of LTR elements in classical Hodgkin Lymphoma (cHL) acted as a promoter for the growth factor receptor gene CSF1R and that expression of this gene is required for tumor survival. However, to which extent and how such elements participate in globally shaping the unique cHL gene expression program is unknown. To address this question we mapped the genome-wide activation of THE1-LTRs in cHL cells using a targeted next generation sequencing approach (RACE-Seq). Integration of these data with global gene expression data from cHL and control B cell lines showed a unique pattern of LTR activation impacting on gene expression, including genes associated with the cHL phenotype. We also show that global LTR activation is induced by strong inflammatory stimuli. Together these results demonstrate that LTR activation provides an additional layer of gene deregulation in classical Hodgkin lymphoma and highlight the potential impact of genome-wide LTR activation in other inflammatory diseases. Overall design: RNA-Seq in laser capture microdissected (LCM) tumour (TU) and non tumour cells (NTC) primary HL material from patient samples
Global long terminal repeat activation participates in establishing the unique gene expression programme of classical Hodgkin lymphoma.
Specimen part, Subject
View SamplesThe goal of this study is to elucidate the influence of treadmill training on transcriptome of the upper lumbar spinal cord after thoracic spinal cord hemisection. mRNA profiles of spinal cords at 23 days-post injury with/without treadmill training were generated. The expression levels of 650 genes in the trained animal were increased ( > 2-fold) compared to untrained animals. Our study represents the detailed analysis of transcriptomes of spinal cord distal to the hemisected lesion after treadmill training, with biologic replicates, generated by RNA-seq technology. Overall design: The effect of training after spinal cord injury (T9) on the transcriptome of intact upper spinal cord was investigated.
Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection.
Specimen part, Cell line, Subject
View SamplesThe Mediator complex is an evolutionary conserved multiprotein complex that plays an essential role in initiating and regulating transcription. Its function is to act as a universal adaptor between RNA Polymerase II and DNA-bound transcription factors to translate regulatory information from activators and repressors to the transcriptional machinery. We have found that the PFT1 gene (which encodes the MED25 subunit of the Mediator complex) is required for the uncompromised expression of both salicylic acid- and jasmonate-dependent defense genes as well as resistance to the leaf-infecting fungal pathogens, Alternaria brassicicola and Botrytis cinerea in Arabidopsis. Surprisingly, we found that the pft1/med25 mutant showed increased resistance to the root infecting pathogen Fusarium oxysporum and that this resistance was independent of classical defense genes. In addition, the over-expression of PFT1 led to increased susceptibility to F. oxysporum. Therefore, to explore this phenomenon further, we wished to use whole genome transcript profiling to identify which genes may be playing a role in pft1/med25-mediated resistance to F. oxysporum.
The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis.
Specimen part, Treatment
View SamplesUsing array comparative genomic hybridization (aCGH), a large number of deleted genomic regions have been identified in human cancers. However, subsequent efforts to identify target genes selected for inactivation in these regions have often been challenging. We integrated here genome-wide copy number data with gene expression data and non-sense mediated mRNA decay rates in breast cancer cell lines to prioritize gene candidates that are likely to be tumour suppressor genes inactivated by bi-allelic genetic events. The candidates were sequenced to identify potential mutations. This integrated genomic approach led to the identification of RIC8A at 11p15 as a putative candidate target gene for the genomic deletion in the ZR-75-1 breast cancer cell line. We identified a truncating mutation in this cell line, leading to loss of expression and rapid decay of the transcript. We screened 127 breast cancers for RIC8A mutations, but did not find any pathogenic mutations. No promoter hypermethylation in these tumours was detected either. However, analysis of gene expression data from breast tumours identified a small group of aggressive tumours that displayed low levels of RIC8A transcripts. Real-time PCR analysis of 38 breast tumours showed a strong association between low RIC8A expression and the presence of TP53 mutations (P=0.006). We demonstrate a data integration strategy leading to the identification of RIC8A as a gene undergoing a classical double-hit genetic inactivation in a breast cancer cell line, as well as in vivo evidence of loss of RIC8A expression in a subgroup of aggressive TP53 mutant breast cancers.
Data integration from two microarray platforms identifies bi-allelic genetic inactivation of RIC8A in a breast cancer cell line.
Sex, Disease, Cell line, Treatment, Time
View SamplesPurpose: We isolated Drosophila midgut cells : Delta+ intestinal stem cells (ISCs), Su(H)+enteroblasts (EBs), Esg+ cells (ISC+EB), Myo1A+Enterocytes (ECs), Pros+Enteroendocrine cells (EEs) and How+Visceral muscle cells (VM) from whole midguts to identify stem cell specific genes and study cell type specificities of midgut cells. We also isolated all the cell types from the 5 major regions (R1-R5) of the Drosophila midgut to study differences in cells in different regions. Methods: 3-7 day old female flies were dissected. Flies with GFP/YFP marking different cell types (using the GAL4-UAS system) were used to separate cells of the midgut.The midguts were dissociated with Elastase and FACS sorted using FACS AriaIII. RNA was extracted, amplified and sequenced. Whole midgut samples were sequenced on Illumina GAIIX and regional cell populations were sequenced on HiSeq2000. Methods:Raw fastqc reads were mapped to the Drosophila genome (Drosophila_melanogaster.BDGP5.70.dna.toplevel.fa) using Tophat 2.0.9 at default (using boost_1_54_0, bowtie2-2.1.0, samtools-0.1.19). Methods: For differential expression analysis, DESeq (p-value adjustment 0.05 by method Benjamini-Hochberg) was used. The reads were normalized also to Reads per kilobase of transcript per million mapped reads (RPKM). Results: More than 50% of the genome is expressed in the adult midgut (FlyAtlas- Chintapalli et al., 2007), of these genes about 50% (2457) were differentially expressed (DE) between all 4 cell types (ISCs, EBs, ECs and EEs) atleast 2 folds with 95% confidence Results: 159 genes that were specifically enriched in ISCs, 509 genes were specifically repressed in ISCs Conclusions: Our study represents the first detailed analysis of Drosophila intestinal cell transcriptomes, with biologic replicates, generated by RNA-seq technology.Our data facilitates comparative investigations of expression profiles of cells and reveals novel stem cell genes. Further region specific profiling adds precision to the analysis of variances in the midgut regions. We identify transcriptional regulators and regional transcription factors which modulate the midgut physiology. The dataset will be a great resource for hypothesis generation, tool building and fine tuned studies on the Drosophila midgut. Overall design: mRNA profiles of Drosophila intestinal cells from whole midguts and midgut regions were generated by Deep Sequencing. Whole midgut profiles were generated in triplicates (Illumina GAIIx, 72 bp read length) and regional cell type profiles were genrated in duplicates (HiSeq 2000, 50bp read length).
Regional Cell-Specific Transcriptome Mapping Reveals Regulatory Complexity in the Adult Drosophila Midgut.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication.
Sex, Specimen part, Cell line, Treatment
View SamplesTitle: Array-based gene expression, CGH and tissue data define a 12q24 gain in neuroblastic tumors with prognostic implication.
Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication.
Specimen part, Cell line, Treatment
View SamplesSince bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidence for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L-serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.
Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone methyltransferase MLL3 contributes to genome-scale circadian transcription.
Specimen part, Time
View Samples