The Nucleosome Remodeling and Deacetylase (NuRD) complex plays an important role in gene expression regulation, stem cell self-renewal, and lineage commitment. Yet little is known about the dynamics of NuRD during cellular differentiation. Here, we study these dynamics using genome-wide profiling and quantitative interaction proteomics in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). The genomic targets of NuRD are highly dynamic during differentiation, with most binding occurring at cell-type specific promoters and enhancers. We identify ZFP296 as a novel, ESC-specific NuRD interactor that also interacts with the SIN3A complex. ChIP-sequencing in Zfp296 knockout (KO) ESCs reveals decreased NuRD binding both genome-wide and at ZFP296 binding sites, although this has little effect on the transcriptome. Nevertheless, Zfp296 KO ESCs exhibit delayed induction of lineage-specific markers upon differentiation to embryoid bodies. In summary, we identify an ESC-specific NuRD interacting protein which regulates genome-wide NuRD binding and cellular differentiation. Overall design: RNA-seq samples of wildtype R1 ESCs and Zfp296 CRISPR KO clone 2 R1 ESCs
NuRD-interacting protein ZFP296 regulates genome-wide NuRD localization and differentiation of mouse embryonic stem cells.
Specimen part, Subject
View SamplesWe used microarrays to identify the gene expression changes after SET knockdown in ESCs and 4 day RA differentiated ESCs
Alternative SET/TAFI Promoters Regulate Embryonic Stem Cell Differentiation.
Specimen part
View SamplesRNA modifications are integral to regulation of RNA metabolism. One such abundant mRNA modification is m6A, which impacts various aspects of RNA metabolism including splicing, transport and degradation. Current knowledge about proteins recruited to m6A to carry out these molecular processes is still limited. Here we describe a comprehensive and systematic mass spectrometry-based screening of m6A interactors in various cell types and species. Amongst the main findings, we identified G3BP1 as a protein, which is repelled by m6A and which positively regulates mRNA stability in an m6A regulated manner. Furthermore, we identified FMR1 as a novel, RNA sequence context dependent m6A reader, thus revealing a connection between an mRNA modification and an autism spectrum disorder. Collectively, our data represents a rich resource for the community and sheds further light on the complex interplay between m6A, m6A interactors and mRNA homeostasis. Overall design: Transcriptome wide profiling of G3BP1 and G3BP2 binding sites and mRNA half-live measurement after G3BP1 overexpression or knockdown.
N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) recruits and repels proteins to regulate mRNA homeostasis.
No sample metadata fields
View SamplesThe NuRD complex is generally thought to repress transcription at both hyper- and hypomethylated regions in the genome. In addition, the complex is involved in the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The ZMYND8 MYND domain directly interacts with PPPL? motifs in the NuRD subunit GATAD2A. Furthermore, GATAD2A and GATAD2B exclusively form homodimers and they thus define mutually exclusive NuRD subcomplexes. ZMYND8 and MBD3 share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and expression of NuRD/ZMYND8 target genes in steady-state asynchronous cells. However, ZMYND8 facilitates immediate recruitment of GATAD2A/NuRD to induced sites of DNA damage. These results thus show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to a distinct NuRD subcomplex. Overall design: RNA-seq samples for HeLa FRT-TO mock, ZMYND8KO, and ZMYND8KO-rescue cells
ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage.
Subject
View SamplesCD8 T cells play an importart role in adaptive immunity to intracellular pathogens. Nave CD8 T cells , that have not encountered antigen previously can be identified by virtue of their distinct phenotype. Upon antigenic encounter, they proliferate rapidly and undergo massive reprograming to differentiate to cytotoxic T lymphocytes. The yellow fever live virus vaccine (YF-17D) provides a model primary acute viral infection that can be used to follow this response.Here we characterize the resting, non-activated naive CD8 T cells in nine healthy adults and YF-specific CD8 T cells elicited in response to YF-17D vaccination from the same donors during the effector (2 weeks after vaccination) and memory (5-8 months later) stages.
Origin and differentiation of human memory CD8 T cells after vaccination.
Specimen part, Subject
View SamplesThese 14 samples originate from peripheral blood mononuclear cells (PBMC) from donors at different times after they were vaccinated with the YF-17D vaccine. Overall design: 10,000 to 100,000 tetramer+ CD8 T cells specific for the NS4B-214 epitope in YFV-17D were purified by flow cytometry based sorting, from 8 vaccinees. Total Naive (CD45RA+ CD8+) CD8 t cells were also sorted from these donors. Subsets were defined based on the time after vaccination. The subsets (cell types) include: Naive CD8 T cells (n=6); YFV-specific Effector CD8 T cells (day 14 after vaccination, n =3) and YFV-specific long term memory CD8 T cells (4 to 12 years after vaccination, n=5).
Origin and differentiation of human memory CD8 T cells after vaccination.
Specimen part, Subject
View SamplesInterleukin-31 (IL-31), a T cells derived cytokine which is mainly produced by CD4+ T cells skewed towards Th2 phenotypes. It signals via a heterodimeric receptors composed of IL-31RA and OSMR that is expressed constitutively in epithelial cells and keratinocytes. IL-31 is shown to play a pathogenic role in allergic and inflammatory diseases. Transgenic mice overexpressing IL-31 have a phenotype similar to atopic dermatitis. Here, we studied the role of IL-31 in skin damage by intradermal administration of recombinant IL-31. Notably, IL-31 was sufficient to increase epidermal basal cell proliferation and thickening of the epidermal layer of skin in mice. Analysis of skin transcriptome indicates a significant increase in the transcripts involved in epidermal cell proliferation and pathological skin remodeling. Thus, our study revealed an important role of IL-31 signaling in activating transcriptional programs involved in the pathophysiology of skin diseases. Overall design: mRNA profiles of C57BL/6 mice skin injected with saline and rIL-31 (20µg) via i.d.
IL-31-Driven Skin Remodeling Involves Epidermal Cell Proliferation and Thickening That Lead to Impaired Skin-Barrier Function.
Specimen part, Treatment, Subject
View SamplesPulmonary fibrosis is often triggered by an epithelial injury resulting in the formation of fibrotic lesions in the lung, which progress to impair gas exchange and ultimately cause death. Recent clinical trials using drugs that target either inflammation or a specific molecule have failed, suggesting that multiple pathways and cellular processes need to be attenuated for effective reversal of established and progressive fibrosis. Although activation of MAPK and PI3K pathways have been detected in human fibrotic lung samples, the therapeutic benefits of in vivo modulation of the MAPK and PI3K pathways in combination are unknown. Overexpression of TGFa in the lung epithelium of transgenic mice results in the formation of fibrotic lesions similar to those found in human pulmonary fibrosis, and previous work from our group shows that inhibitors of either the MAPK or PI3K pathway can alter the progression of fibrosis. In this study, we sought to determine whether simultaneous inhibition of the MAPK and PI3K signaling pathways is a more effective therapeutic strategy for established and progressive pulmonary fibrosis. Our results showed that inhibiting both pathways had additive effects compared to inhibiting either pathway alone in reducing fibrotic burden, including reducing lung weight, pleural thickness, and total collagen in the lungs of TGFa mice. This study demonstrates that inhibiting MEK and PI3K in combination abolishes proliferative gene changes associated with fibrosis and myfibroblast accumulation and thus may serve as a therapeutic option in the treatment of human fibrotic lung disease where these pathways play a role. Overall design: mRNA profiles of CCSP/TGFalpha mice treated with vehicle, ARRY, PX-866, ARRY/PX-866
Dual targeting of MEK and PI3K pathways attenuates established and progressive pulmonary fibrosis.
No sample metadata fields
View SamplesGlucocorticoids (GC) have a major impact on the biology of normal and malignant cells of the lymphoid lineage. This includes induction of apoptosis which is exploited in the therapy of acute lymphoblastic leukemia (ALL) and related lymphoid malignancies. MicroRNAs (miRNAs) and the related mirtrons are ~22 nucleotide RNA molecules implicated in the control of essential biological functions including proliferation, differentiation and apoptosis. They derive from polymerase-II transcripts but whether GCs regulate miRNA-encoding transcription units is not known. We investigated miRNA/mirtron expression and GC regulation in 8 ALL in vitro models and 13 ALL children undergoing systemic GC monotherapy using a combination of expression profiling techniques, real time RT-PCR and northern blotting to detect mature miRNAs and/or their precursors. We identified a number of GC-regulated miRNAs/mirtrons, including the myeloid-specific miR-223 and the apoptosis and cell cycle arrest-inducing mir15~16 cluster. Thus, the observed complex changes in miRNA/mirtron expression during GC treatment might contribute to the anti-leukemic GC effects in a cell context dependent manner.
Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia.
No sample metadata fields
View Samples