HCN4 channels are the major HCN channel isoform expressed in the sinoatrial node (SAN) and play a key role in cardiac pacemaking. We have characterized the gene expression profile in the SAN of adult mice expressing cAMP-insensitive HCN4 channels (HCN4FEA mice) in comparison to WT mice.
cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells.
Sex, Specimen part
View SamplesCilia are ubiquitous cell surface projections that modulate various sensory- and motility based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. As new components required for cilium biogenesis and function remain unidentified, we sought to further define and validate the transcriptional targets of the ciliogenic C. elegans RFX transcription factor DAF-19. To this end, transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using selectively staged embryos where ciliogenesis occurs in most ciliated sensory neurons
Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport.
Specimen part
View SamplesBy screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes (including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of daf-19(+) and daf-19(-) animals.
Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics.
No sample metadata fields
View Samples