Mammalian gonadal sex determination is dependent on proper expression of sex determining genes in fetal gonadal somatic support cells (i.e., pre-granulosa and pre-Sertoli cells in XX and XY gonads, resp.). We used a unique transgenic mouse strain combined with microarray profiling to identify all the differentially expressed transcripts in XX and XY isolated somatic support cells during critical stages of gonadal development and differentiation.
New candidate genes identified for controlling mouse gonadal sex determination and the early stages of granulosa and Sertoli cell differentiation.
Sex, Specimen part
View SamplesGonadal sex determining (GSD) genes that initiate fetal ovarian and testicular development and differentiation are expressed in the cells of the urogenital ridge that differentiate as somatic support cells (SSCs), i.e., granulosa cells of the ovary and Sertoli cells of the testis. To identify potential new mammalian GSD genes, we analyzed the gene expression differences between XX and XY SSCs cells isolated from the gonads of embryonic day (E) 13 mouse fetuses carrying an EGFP reporter transgene expressed specifically in SSCs. In addition, genome wide expression differences between XX and XY E13 whole gonads were examined. Newly identified differentially expressed transcripts are potential GSD genes involved in unexplained human sex reversal cases.
Transcriptional profile of mouse pre-granulosa and Sertoli cells isolated from early-differentiated fetal gonads.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.
Specimen part, Treatment
View SamplesThis study examined the effect of early pregnancy on the gene expression profiles of stromal and various epithelial mammary cell subpopulations in mice.
PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.
Specimen part
View SamplesThis study examined the gene expression profile of mammary tumors derived from Lgr5- and K8-positive cell-of-origins
PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.
Specimen part
View SamplesThis study examined the effect of mutant PIK3CAH1047R expression in mammary subsets of preneoplastic mammary glands from Lgr5-creERT2/PIK3CA H1047R mice
PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.
Specimen part, Treatment
View SamplesThis study examined the effect of mutant PIK3CAH1047R expression in mammary subsets of preneoplastic mammary glands from K8-creERT2/PIK3CA H1047R mice
PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.
Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF.
Specimen part
View SamplesCD8+ T cells in chronic viral infections like HIV develop functional defects such as loss of IL-2 secretion and decreased proliferative potential that are collectively termed exhaustion1. Exhausted T cells express increased levels of multiple inhibitory receptors, such as Programmed Death 1 (PD-1). PD-1 inhibition contributes to impaired virus-specific T cell function in chronic infection because antibody-mediated blockade of its ligand, Programmed Death Ligand 1 (PD-L1) is sufficient to improve T cell function and reduce viral replication in animal models. Reversing PD-1 inhibition is therefore an attractive therapeutic target, but the cellular mechanisms by which PD-1 ligation results in T cell inhibition are not fully understood. PD-1 is thought to limit T cell activation by attenuating T cell receptor (TCR) signaling. It is not known whether PD-1 ligation also acts by upregulating genes in exhausted T cells that impair their function. Here, we analyzed gene-expression profiles from HIV-specific CD8+ T cells in patients with HIV and show that PD-1 coordinately upregulates a program of genes in exhausted CD8+ T cells from humans and mice. This program includes upregulation of basic leucine transcription factor, ATF-like (BATF), a transcription factor in the AP-1 family. Enforced expression of BATF was sufficient to impair T cell proliferation and cytokine secretion, while BATF knockdown reduced PD-1 inhibition. Silencing BATF in CD4+ and CD8+ T cells from chronic viremic patients rescued HIV-specific T cell function. Thus inhibitory receptors can cause T cell exhaustion by upregulating genes such as BATF that inhibit T cell function.
Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF.
Specimen part
View SamplesCD8+ T cells in chronic viral infections like HIV develop functional defects such as loss of IL-2 secretion and decreased proliferative potential that are collectively termed exhaustion1. Exhausted T cells express increased levels of multiple inhibitory receptors, such as Programmed Death 1 (PD-1). PD-1 inhibition contributes to impaired virus-specific T cell function in chronic infection because antibody-mediated blockade of its ligand, Programmed Death Ligand 1 (PD-L1) is sufficient to improve T cell function and reduce viral replication in animal models. Reversing PD-1 inhibition is therefore an attractive therapeutic target, but the cellular mechanisms by which PD-1 ligation results in T cell inhibition are not fully understood. PD-1 is thought to limit T cell activation by attenuating T cell receptor (TCR) signaling. It is not known whether PD-1 ligation also acts by upregulating genes in exhausted T cells that impair their function. Here, we analyzed gene-expression profiles from HIV-specific CD8+ T cells in patients with HIV and show that PD-1 coordinately upregulates a program of genes in exhausted CD8+ T cells from humans and mice. This program includes upregulation of basic leucine transcription factor, ATF-like (BATF), a transcription factor in the AP-1 family. Enforced expression of BATF was sufficient to impair T cell proliferation and cytokine secretion, while BATF knockdown reduced PD-1 inhibition. Silencing BATF in CD4+ and CD8+ T cells from chronic viremic patients rescued HIV-specific T cell function. Thus inhibitory receptors can cause T cell exhaustion by upregulating genes such as BATF that inhibit T cell function.
Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF.
Specimen part
View Samples