refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 75 results
Sort by

Filters

Technology

Platform

accession-icon GSE25635
Histone acetylation dependent microarray analysis uncovers a role for Tip60 HAT activity in nervous system function and general metabolism
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Tip60 is a key histone acetyltransferase (HAT) enzyme that plays a central role in diverse biological processes critical for general cell function, however the chromatin-mediated cell-type specific developmental pathways that are dependent exclusively upon the HAT activity of Tip60 remain to be explored. Here, we investigate the role of Tip60 HAT activity in transcriptional control during multicellular development, in vivo by examining genome-wide changes in gene expression in a Drosophila model system specifically depleted for endogenous dTip60 HAT function. We show that amino acid residue E431 in the catalytic HAT domain of dTip60 is critical for the acetylation of endogenous histone H4 in our fly model in vivo, and demonstrate that dTip60 HAT activity is essential for multicellular development. Moreover, our results uncover a novel role for Tip60 HAT activity in controlling neuronal specific gene expression profiles essential for nervous system function as well as a central regulatory role for Tip60 HAT function in general metabolism.

Publication Title

Microarray analysis uncovers a role for Tip60 in nervous system function and general metabolism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-304
Transcription profiling of mouse embryonic stem (ES) cells differentiated for 6 days samplesed at 24 hour timepoints (d1-d6) vs undifferentiated cells (d0)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Mouse ES cells were differentiated for 6 days. Undifferentiated cells (d0) were compared to cells harvested at 24 hour timepoints (d1-d6).

Publication Title

Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene.

Sample Metadata Fields

Age, Specimen part, Cell line, Time

View Samples
accession-icon E-MEXP-303
Transcription profiling of human embryonic stem (ES) cells. Undifferentiated cells of different passage numbers (p19 and p128) were vs cells differentiated in hanging drops for 5 days (d5 embryoid bodies) or expanded on gelatin coated dishes for a further 9 days (d14 embryoid bodies)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133B Array (hgu133b), Affymetrix Human Genome U133A Array (hgu133a)

Description

Undifferentiated cells of different passage numbers (p19 and p128) were compared to cells differentiated in hanging drops for 5 days (d5 embryoid bodies) or expanded on gelatin coated dishes for a further 9 days (d14 embryoid bodies).

Publication Title

Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene.

Sample Metadata Fields

Age, Specimen part, Cell line, Time

View Samples
accession-icon SRP109018
Regulatory networks specifying cortical interneurons from human embryonic stem cells reveal roles for CHD2 in interneuron development
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

Human embryonic stem cells (hESCs) were specified as ventral telencephalic neuroectoderm (day 4) and then into medial ganglionic emininence (MGE)-like progenitors (day 15) and were subsequently differentiated into cortical interneuron (cIN)-like cells (day 25-35), by modification of previously published protocols. RNA-seq analysis at days 0, 4, 15, 25, and 35 defined transcriptome signatures for MGE and cIN cell identity. Further integration of these gene expression signatures with ChIP-seq for the NKX2-1 transcription factor in MGE-like progenitors defined NKX2-1 putative direct targets, including genes involved in both MGE specification and in several aspects of later cIN differentiation (migration, synaptic function). Among the NKX2-1 direct targets with MGE and cIN enriched expression was CHD2, a chromatin remodeling protein. Since CHD2 haploinsufficiency can cause epilepsy and/or autism, which can involve altered cIN development or function, we evaluated CHD2 requirements in these processes. Transcriptome changes were evaluated in CHD2 knockdown MGE-like progenitors at day 15, revealing diminished expression of genes involved in MGE specification and cIN differentiation including channel and synaptic genes implicated in epilepsy, while later cIN electrophysiological properties were also altered. We defined some shared cis-regulatory elements bound by both NKX2-1 and CHD2 and characterized their ability to cooperatively regulate cIN gene transcription through these elements. We used these data to construct regulatory networks underlying MGE specification and cIN differentiation and to define requirements for CHD2 and its ability to cofunction with NKX2-1 in this process. Overall design: To comprehensively define changes in gene expression profiles that accompany cortical interneuron (cIN) specification and differentiation process, we have performed RNA sequencing analysis at days 0 (hESCs), 4, 15, 25, and 35. To understand the gene regulatory networks through which NKX2-1 may directly control these processes, we defined its direct targets by performing NKX2-1 ChIP-seq in day 15 MGE-like cells. Chromatin enrichment for NKX2-1 binding was compared to input and IgG controls. To define the CHD2-dependent gene expression programs during cIN specification, we used CHD2 knockdown (KD) to conduct RNA-seq analysis in d15 CHD2 KD MGE-like cells.

Publication Title

Regulatory networks specifying cortical interneurons from human embryonic stem cells reveal roles for CHD2 in interneuron development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40709
Expression data comparing adult human islets to human embryonic stem cell-derived insulin-positive and insulin-negative cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The study was completed to compare expression profiles of primary human beta cells (in the form of adult human islets), to the expression profile of hESC-derived beta-like cells. A HES3 line modified by homologous recombination to express GFP under the insulin promoter allowed us to FACS sort the hESC-derived cells into purified insulin-positive (presumably beta-like cells), and insulin-negative populations.

Publication Title

The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74713
Isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP065774
CD13 and ROR2 permit isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The resultant heat map demonstrates the maturation of CD13+/ROR2+ cells as they proceed through cardiac differentiation. Overall design: RNA-seq analysis was preformed on RNA samples from undifferentiated hESCs, 13R2+ and 13R2- populations from day 3, 13R2+/NKX2-5+ and 13R2+/NKX2-5- from day 7, and 13R2+/NKX2-5+/a-MHC+ and 13R2+/NKX2-5+/MHC- from day 14

Publication Title

CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74664
hESC MIXL1+ MIXL1- microarray
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray analysis of isolated hES cells from day 3 of cardiac differentiation was used to identify differences between MIXL1eGFP+ and MIXL1eGFP- transcriptomes. We identified 6,757 differentially regulated genes, of which 2,520 were upregulated 2-fold in the eGFP+ (MIXL1+) mesoderm population

Publication Title

CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP104137
Medial Ganglionic Eminence and Cortical Organoids Model Human Brain Development and Interneuron Migration [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Organoid techniques provide unique platforms to model brain development and neurological disorders. While organoids recapitulating corticogenesis were established, a system modeling human medial ganglionic eminence (MGE) development, a critical ventral brain domain producing cortical interneurons and related lineages, remains to be developed. Here, we describe a system to generate MGE or cortex-specific organoids from human pluripotent stem cells. These organoids recapitulate the developments of MGE and cortex domains respectively. Population and single-cell transcriptomic profiling revealed transcriptional dynamics and lineage productions during MGE and cortical organoids development. Chromatin accessibility landscapes were found to be involved in this process. Furthermore, MGE and cortical organoids generated physiologically functional neurons and neuronal networks. Finally, we applied fusion organoids as a model to investigate human interneuron migration. Together, our study provides a new platform for generating domain-specific brain organoids, for modeling human interneuron migration, and offers deeper insight into molecular dynamics during human brain development. Overall design: mRNA profiles of hMGEOs and hCOs were generated by deep sequencing

Publication Title

Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE52658
Dynamic developmental signaling logic underlying lineage bifurcations during human endoderm induction and patterning from pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact