Transgenic GFAP-, NES-, and SYN- CRE mice were injected with a lenti-viral construct containing a floxed RFP directly upstream of a cassette containing si-p53, GFP, and mutant HRAS. Tumors arising from the various CRE tissue specific promoters and differing injections sites were compared to normal hippocampus and cortex.
Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice.
No sample metadata fields
View SamplesComparison of expression data of rat forebrain astrocytes from P1, P7 acutely isolated by immunopanning or cultured with astrocytes prepared by McCarthy and de Vellis' (1980) method. Elucidating the genes induced by serum in immunopannedrat astrocytes.
Development of a method for the purification and culture of rodent astrocytes.
Specimen part
View SamplesWe hypothesized that social interactions, such as those involved in courtship and mating, would lead to assayable changes in gene expression that may have important effects on individual reproductive success and fitness through alterations in physiology or changes in nervous system function.
Mating alters gene expression patterns in Drosophila melanogaster male heads.
Sex, Age, Specimen part, Treatment
View SamplesWe hypothesized that social interactions, such as those involved in reproductive behaviors, would lead to immediate and assayable changes in gene expression that may have important effects on individual reproductive success and fitness through alterations in physiology or via short-term or long-term changes in nervous system function.
Socially-responsive gene expression in male Drosophila melanogaster is influenced by the sex of the interacting partner.
Sex, Age, Specimen part, Treatment
View SamplesSolid cancers develop within a supportive microenvironment that promotes tumor formation and continued growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically-engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), previous studies have demonstrated that microglia are important for glioma formation and maintenance. To identify the tumor-associated microglial factors that support glioma growth (gliomagens), we employed a comprehensive large scale discovery effort using optimized advanced RNA-sequencing methods. Candidate gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative RT-PCR and RNA FISH following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, Ccl5 was identified as a highly expressed chemokine in both genetically engineered Nf1 mouse and human optic gliomas. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, Ccl5 inhibition with neutralizing antibodies reduced Nf1 mouse optic glioma growth in vivo. Collectively, these findings establish Ccl5 as critical stromal growth factor in low-grade glioma maintenance relevant to future microglia-targeted therapies for brain tumors. Overall design: Nf1 optic glioma associated microglia from mice were flow sorted. Upregulated genes of glioma associated microglia were verified and further examined.
RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth.
No sample metadata fields
View SamplesThis study investigates the effects of the aryl hydrocarbon receptor (AhR) ligands TCDD and PCB126 on hepatic gene expression in female sprague dawley rats. Rats were treated with toxicological equivalent doses of TCDD (100ng/kg/day) (Toxic equivalence factor (TEF) = 1.0), PCB126 (30ng, 300ng or 1000ng/kg/day) (TEF = 0.1) or a vehicle control of corn oil:acetone (99:1) 5 days a week for 52 weeks.
Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands.
Specimen part
View SamplesTREM-1 is an orphan immunoreceptor expressed on monocytes, macrophages, and neutrophils. TREM-1 associates with and signals via the adapter protein DAP12/TYROBP, which contains an immunoreceptor tyrosine-based activation motif (ITAM). TREM-1 activation by receptor cross-linking is pro-inflammatory, and can amplify cellular responses to Toll-like receptor (TLR) ligands such as bacterial lipopolysaccharide (LPS). To investigate the cellular consequences of TREM-1 activation, we have characterized global gene expression changes in human monocytes in response to TREM-1 cross-linking in comparison to and combined with LPS. Both TREM-1 activation and LPS up-regulate chemokines, cytokines, matrix metalloproteases, and PTGS/COX2, consistent with a core inflammatory response. However, other immunomodulatory factors are selectively induced, including SPP1 and CSF1 (i.e., M-CSF) by TREM-1 activation and IL-23 and CSF3 (i.e., G-CSF) by LPS. Additionally, cross-talk between TREM-1 activation and LPS occurs on multiple levels. While synergy in GM-CSF protein production is reflected in commensurate mRNA abundance, comparable synergy in IL-1b protein production is not. TREM-1 activation also attenuates the induction of some LPS target genes, including those that encode IL-12 cytokine family subunits. Whereas positive TREM-1 outputs are abolished by the PI3K inhibitor wortmannin, this attenuation is largely PI3K-independent. These experiments provide a detailed analysis of the cellular consequences of TREM-1 activation, and highlight some of the complexity in signal integration between ITAM- and TLR-mediated signaling.
Innate immune responses to TREM-1 activation: overlap, divergence, and positive and negative cross-talk with bacterial lipopolysaccharide.
No sample metadata fields
View SamplesThe aim of this experiment was to understand secondary cell wall formation as it is a major constituent of wood and plant fibres. To identify potential novel genes involved in this process, data has been generated from Arabidopsis stem, leaf and hypocotyl tissue undergoing varying amounts of secondary cell wall synthesis.
Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics.
Age, Specimen part
View SamplesIn this study, using a Patient Derived Xenograft (PDX) system established by transplanting primary tumors from pre-metastatic breast cancer patients we demonstrate that development of distant organ metastases correlates with the presence of Bone Marrow Disseminated Tumor Cells (BM DTCs) in the PDX mice. Comparative gene expression analysis of bone marrow (BM) from tumor bearing PDX mice which developed metastatic disease was carried out with BM from non-tumor bearing controls.
Identifying biomarkers of breast cancer micrometastatic disease in bone marrow using a patient-derived xenograft mouse model.
Specimen part
View SamplesLuteinising hormone (LH) is a key regulator of male fertility through its effects on testosterone secretion by Leydig cells. Mice in which the LH receptor is knocked out (LuRKO) show reduced testicular size, reduced testosterone, elevated serum LH, and a spermatogenic arrest that can be rescued by administration of testosterone. This study examines the onset of spermatogenic arrest in LuRKO males using transcriptional profiling of developing mutant and control testes. We also examine the initial stages of testosterone rescue of the phenotype, in order to identify key upstream regulators of testosterone-dependent spermatogenesis.
Transcriptional profiling of luteinizing hormone receptor-deficient mice before and after testosterone treatment provides insight into the hormonal control of postnatal testicular development and Leydig cell differentiation.
Specimen part
View Samples