Needle biopsies were performed to obtain liver samples from patients for clinical purposes from patients with Alagille syndrome. A small portion was snap frozen and later used for RNA sequencing analysis. Needle biospies from 5 patients with other liver disorders were included as controls. Overall design: Examination of RNA expression in Alagille patients'' liver samples, compared to other control liver samples (with other chronic liver diseases).
Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations.
Specimen part, Disease stage, Subject
View SamplesRNA sequencing of control or Notch1-expressing mouse cells co-cultured with control, Jag1WT, or Jag1Ndr-expressing human cells. Deep sequencing and bioinformatical separation of mouse and human reads reveals transcripts specifically regulated in mouse receptor-expressing cells. Overall design: Mouse C2C12 control and C2C12-FLNotch1, and human HEK-293-Flp-In cells (Hansson et al., 2010): HEK293-Flp control (Flp Ctrl), HEK293-Flp-Jag1WT (Flp Jag1+), HEK293-Flp-Jag1Ndr (Flp Jag1Ndr) were used in this experiment. In one 12-well plate, we seeded 3 wells of mouse C2C12 control cells and 3 wells of C2C12-FLN1 cells, with 3.6x105 cells in 1 mL antibiotic-free medium per well. Cells were allowed to settle for 8 hours. C2C12 control and C2C12-FLN1 cells were transfected with pcDNA5 (1.6 ug/well). All transfections were done using Lipofectamine® 2000 (InvitrogenTM, cat. no. 11668-019) with Opti-MEM® I Reduced Serum Medium (Gibco®, cat. no. 31985-062), according to manufacturer's instructions. The following day (18 hours post transfection), 3.6x105 cells in 0.5 mL antibiotic-free medium of Flp Ctrl, Flp Jag1+, or Flp Jag1Ndr cells were added. Cells were co-cultured for 6 hours, then lysed in 350 uL per well Buffer RLT (QIAGEN, cat. no. 79216) with 1% 2-Mercaptoethanol (Sigma-Aldrich®, cat. no. M3148) and stored at -80°C until RNA extraction.
Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations.
Subject
View SamplesAnalyses of gene expression by RNA-Seq in mouse E14.5 fetal liver burst-forming unit erythroid (BFU-E) cells untreated or treated by dexamethasone (DEX) with or without PPARa agonist GW7647. Overall design: RNA-Seq was performed on enriched populations of mouse BFU-E isolated from E14.5 fetal liver, as well as BFU-E enriched cells treated with Dex ± GW7647.
PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.
No sample metadata fields
View SamplesThe regulatory mechanisms that shapes the hepatic zonation is not well understood. In addition, the concept and significance of of hepatic zonation is well established in rodens, however, its relavence to human liver biology remain elusive. We conducted a comprehensive transcriptome analysis of each zonation within normal human liver vis Laser Capture Microdissection approach. Here, we report a poly A RNA sequencing data of the individual zone of liver tissue as well as the whole liver of the corresponding subjects. Overall design: The RNA samples were collected from each zone within hepatic lobule by a Laser Captured Microdissection approach. This study examined the gene expression profile in each zone of the normal human liver.
Dual modulation of human hepatic zonation via canonical and non-canonical Wnt pathways.
Sex, Subject
View SamplesErythroid progenitor BFU-Es are so-named based on their ability to generate in methylcellulose culture large colonies of erythroid cells that consist of “bursts” of smaller erythroid colonies derived from the later CFU-E Epo- dependent progenitors. “Early” BFU-E cells forming large BFU-E colonies presumably have higher capacities for self-renewal than do those forming small BFU-E colonies. In order to understand the mechanism underlying this heterogeneity, we conducted single cell transcriptome analysis on BFU-E cells purified from mouse embryos. Our analyses showed that there are two principal subgroups of mouse BFU-E cells and that the type III TGFß receptor (TßRIII) is a potential marker that distinguishes “early” and “late” BFU-Es. Expression of TßRIII is correlated with that of GATA1, a gene encoding an erythroid transcription factor induced during the BFU-E to CFU-E transition. The mouse and human BFU-E sub populations (TßRIII10%lo) expressing the 10% lowest amount of surface TßRIII are indeed enriched for early BFU-Es, and are significantly more responsive to glucocorticoid stimulation, which promotes BFU-E self-renewal, as compared to the total BFU-E population. The TßRIII10%lo BFU-E subpopulation presumably represents earlier BFU-Es with maximal capacity for self-renewal. Consistent with this notion, signaling by the TGFß receptor kinases RI and RII increases during the transition from early (TßRIII10%lo) to late (TßRIII10%hi) BFU-Es and then decreases in CFU-E cells. Blocking TGF-ß signaling by receptor kinase inhibitors increase TßRIII10%lo BFU-E cell self-renewal and increases total erythroblast production, suggesting the use of this type of drug in treating Epo unresponsive anemias. Overall design: Discovery of BFU-E subpopulations
TGF-β inhibitors stimulate red blood cell production by enhancing self-renewal of BFU-E erythroid progenitors.
Specimen part, Subject
View SamplesThis study addresses long-term effects of clinically relevant regimens of radiation in human glioma stem cells. Our investigations reveal a strikingly diverse spectrum of changes in cell behavior, gene expression patterns and tumor-propagating capacities evoked by radiation in different types of glioma stem cells. Evidence is provided that degree of cellular plasticity but not the propensity to self-renew is an important factor influencing radiation-induced changes in the tumor-propagating capacity of glioma stem cells. Gene expression analyses indicate that paralell transcriptomic responses to radiation underlie similarity of clinically relevant cellular outcomes such as the ability to promote tumor growth after radiation. Our findings underscore the importance of longitudinal characterizations of molecular and cellular responses evoked by cytotoxic treatrments in glioma stem cells.
Diversity of Clinically Relevant Outcomes Resulting from Hypofractionated Radiation in Human Glioma Stem Cells Mirrors Distinct Patterns of Transcriptomic Changes.
Treatment
View SamplesWe showed different function of monocyte derived cells in the lamina propria of the colon under steady state and inflammatory conditions.
Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells.
Sex, Specimen part
View SamplesThe purpose of this study was to characterize the gene expression profile of MDA-MB-231 breast cancer cells treated with various SCFA-hexosamine analogs to better understand the role of various modifications to this scaffold.
Hexosamine template. A platform for modulating gene expression and for sugar-based drug discovery.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MCL-1 Is a Key Determinant of Breast Cancer Cell Survival: Validation of MCL-1 Dependency Utilizing a Highly Selective Small Molecule Inhibitor.
Cell line
View SamplesmRNA expression profile of cultured Breast Cancer cell line measured by Affymetrix microarrays
MCL-1 Is a Key Determinant of Breast Cancer Cell Survival: Validation of MCL-1 Dependency Utilizing a Highly Selective Small Molecule Inhibitor.
Cell line
View Samples