refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 84 results
Sort by

Filters

Technology

Platform

accession-icon GSE10908
Differential gene expression in ADAM10 over-expressing transgenic mice
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In a transgenic mouse model of Alzheimer disease (AD), cleavage of the amyloid precursor protein (APP) by the -secretase ADAM10 prevented amyloid plaque formation and alleviated cognitive deficits. Furthermore, there was a positive influence of ADAM10 over-expression on neurotransmitter-specific formation of synapses and on synaptic plasticity.

Publication Title

Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE7355
Candida-induced expression profile in HUVEC
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Using oligonucleotide microarray analysis, we identified 56 genes that were transcriptionally up-regulated and 69 that were suppressed upon exposure of endothelial cells to C. albicans. Among the regulated genes those attributed to the categories chemotaxis, signaling, and transcription and translation were remarkably overrepresented.

Publication Title

Candida albicans triggers activation of distinct signaling pathways to establish a proinflammatory gene expression program in primary human endothelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18387
Murine CD4+ T cells from DEREG mice expressing GFP under the control of the FoxP3 promotor
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Naturally occurring CD25+CD4+ regulatory T cells (T reg cells) are currently intensively characterized because of their major importance in modulating host responses to tumors and infections, in preventing transplant rejection, and in inhibiting the development of autoimmunity and allergy. Originally, CD4+ T reg cells were identified exclusively by the constitutive expression of CD25, and many in vivo experiments have been performed using depleting antibodies directed against CD25. However, both the existence of CD25 T reg cells, especially within peripheral tissues, as well as the expression of CD25 on activated conventional T cells, which precludes discrimination between T reg cells and activated conventional T cells, limits the interpretation of data obtained by the use of anti-CD25 depleting antibodies. The most specific T reg cell marker currently known is the forkhead box transcription factor Foxp3, which has been shown to be expressed specifically in mouse CD4+ T reg cells and acts as a master switch in the regulation of their development and function. To address the question of the in vivo role of T reg cells in immunopathology, we have generated bacterial artificial chromosome (BAC)transgenic mice termed depletion of regulatory T cell (DEREG) mice, which express a diphtheria toxin receptor (DTR) enhanced GFP (eGFP) fusion protein under the control of the foxp3 locus, allowing both detection and inducible depletion of Foxp3+ T reg cells. The gene expression profile of both CD4+eGFP+FoxP3+ and CD4+eGFPnegFoxP3neg cells isolated from DEREG mice was here analyzed by micro array.

Publication Title

Immunostimulatory RNA blocks suppression by regulatory T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP144076
Nascent RNA Sequencing after NMYC activation in SH-EP MYCNER cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In order to distinguish transcription changes from RNA modification and post transcription changed, nascent RNA seq via metabolic labeling of freshly synthesized RNA was carried out using 4sU labeling/biotin purification. Overall design: nascent RNA was extractred post N-MYC activation and compared with untreated cells nascent RNA to gather fold changes of pre-mRNA on gene basis.

Publication Title

MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE66336
Mechanical stress enhances CD9 expression in cultured podocytes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomes of differentiated cells of the conditionally immortalized mouse podocyte cell line SVI (Schiwek et al., Kidney Int. 66: 91-101, 2004) were determined as described in Warsow et al. (Kidney Int. 84: 104-115, 2013) after application of mechanical stress (Endlich et al., J. Am. Soc. Nephrol. 12: 413-422, 2001) as compared to control conditions.

Publication Title

Mechanical stress enhances CD9 expression in cultured podocytes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE10573
Superseries_Endoh2008_PcG_Pou5f1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2). PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC1. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome.

Publication Title

Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10476
Gene expression of mouse ES cells, Ring1A/B double KO
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2)1-5. PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC13-7. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog9. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome.

Publication Title

Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10477
Gene expression of mouse ES cell, conditional Pou5f1 KO
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2)1-5. PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC13-7. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog9. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome.

Publication Title

Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33714
Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or podocytes using FACsorting. By this approach, the morphology of primary glomerular epithelial cells in culture could be resolved: Primary podocytes formed either large cells with intracytoplasmatic extensions or smaller spindle shaped cells, depending on specific culture conditions. Primary PECs were small and exhibited a spindle-shaped or polygonal morphology. In the very early phases of primary culture, rapid changes in gene expression (e.g. of WT-1 and Pax-2) were observed. However, after prolonged culture primary PECs and podocytes still segregated clearly in a transcriptome analysis - demonstrating that the origin of primary cell cultures is important. Of the classical markers, synaptopodin and podoplanin expression were differentially regulated the most in primary PEC and podocyte cultures. However, no expression of any endogenous gene allowed to differentiate between the two cell types in culture. Finally, we show that the transcription factor WT1 is also expressed by PECs. In summary, genetic tagging of PECs and podocytes is a novel and necessary tool to derive pure primary cultures with proven origin. These cultures will be a powerful tool for the emerging field of parietal epithelial cell biology.

Publication Title

Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41523
Differentiated mouse podocytes (SVI)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptomes of differentiated cells of the conditionally immortalized mouse podocyte cell line SVI (Schiwek et al., Kidney Int. 66: 91-101, 2004) were determined as described in Kabgani et al. (PLoS One 7:e34907, 2012).

Publication Title

Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact