refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 9 of 9 results
Sort by

Filters

Technology

Platform

accession-icon GSE71836
Leukemia reconstitution in vivo is driven by cells in early cell cycle and low metabolic state
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To characterize LICs in ALL irrespective of surface markers expression, we investigated leukemia initiating activities of cellular subfractions of patient-derived xenograft BCP-ALL cells sorted according to different cell cycle phases (i.e. G0/G1 and G2/M) followed by transplantation onto NOD/SCID mice. All cell fractions led to leukemia engraftment indicating LIC activity irrespective of cell cycle stage. Most importantly, cells isolated from G0/G1 cell cycle phases led to early leukemia engraftment in contrast to cells from late cell cycle (G2/M). To further characterize cells with different engraftment potential in vivo, we analyzed the gene expression profiles of early (G1b early) and late (G2/M) engrafting cells.

Publication Title

Leukemia reconstitution <i>in vivo</i> is driven by cells in early cell cycle and low metabolic state.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59232
Control of YAP/TAZ by glucose metabolism
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Aerobic glycolysis tunes YAP/TAZ transcriptional activity.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE59228
Regulation of gene expression by glucose metabolism in mammary cell lines
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Reprogramming of cancer cell metabolism toward aerobic glycolysis, i.e. the Warburg effect, is a hallmark of cancer; according to current views, the rationale for selecting such energy-inefficient metabolism is the need to increase cellular biomass to sustain production of daughter cells and proliferation. In this view, metabolic reprogramming is considered as a simple phenotypic endpoint that occurs as a consequence of signal transduction mechanisms, including oncogene-driven nutrient uptake and metabolic rewiring. A newly emerging paradigm is instead that transcriptional networks and oncogenic signaling can also be regulated downstream of metabolic pathways, that assume causative roles in controlling cancer cell behavior, above and beyond their core biochemical function. To explore possible links between glucose metabolism and nuclear gene transcription we compared immortalized mammary epithelial cells (MCF10A) and metastatic breast cancer cells (MDA-MB-231) growing in high glucose or in the presence of a widely used inhibitor of glucose uptake / glucose metabolism, 2-deoxy-glucose (2DG).

Publication Title

Aerobic glycolysis tunes YAP/TAZ transcriptional activity.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE33950
SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Triple Negative Breast cancer accounts for some of the most aggressive types of breast cancer. By interrogating clinical datasets, we found that the activities of p63 and Hypoxia-Inducible-Factors (HIFs), two master regulators of the invasive and metastatic cancer cell phenotype are linked in TNBC through the p63-target Sharp1. Mechanistically, Sharp1 promotes HIF-1/HIF-2 proteasomal degradation by serving as HIFs presenting factor to the proteasome independently from oxygen levels and prior ubiquitination.

Publication Title

SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE59230
Regulation of gene expression by loss-of-YAP/TAZ in MDA-MB-231 breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

YAP1 (Yes-associated protein 1) and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1) are nucleo-cytoplasmic shuttling proteins that can function in the nucleus as transcriptional coactivators. Their role in regulating gene transcription has been so far mainly investigated by overexpressing YAP1 or TAZ, while here we sought to determine which genes are regulated by endogenous levels of YAP/TAZ. To this end, we compared MCF10A cells transfected with a control non-targeting siRNA to cells transfected with two independent mixes of siRNA targeting both YAP and TAZ.

Publication Title

Aerobic glycolysis tunes YAP/TAZ transcriptional activity.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE59229
Regulation of gene expression by loss-of-YAP/TAZ in MCF10A mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

YAP1 (Yes-associated protein 1) and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1) are nucleo-cytoplasmic shuttling proteins that can function in the nucleus as transcriptional coactivators. Their role in regulating gene transcription has been so far mainly investigated by overexpressing YAP1 or TAZ, while here we sought to determine which genes are regulated by endogenous levels of YAP/TAZ. To this end, we compared MCF10A cells transfected with a control non-targeting siRNA to cells transfected with two independent mixes of siRNA targeting both YAP and TAZ.

Publication Title

Aerobic glycolysis tunes YAP/TAZ transcriptional activity.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE55622
Cytoplasmic YAP and TAZ are intrinsic components of the b-catenin destruction complex
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To investigate the role of YAP/TAZ as b-catenin inhibitors, we compared the expression profiles of Rex1GFPd2 ES cells transfected with siControl#1, siControl#2, siYAP/TAZ#1, siYAP/TAZ#2 and cultured in 2i medium or PD-only medium

Publication Title

YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86067
Antitumor effect of FOXO1 inhibitor AS1842856 on B-cell precursor acute lymphoblastic leukemia (BCP-ALL).
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We found that small moleculal weight FOXO1 inhibitor has antitumor affect against BCP-ALL cell lines RS4;11 and UoCB6

Publication Title

Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP095037
Expression charcaterization of an internal protocol developed to differentiate RPE cells
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

We performed RNA-seq and miRNA-seq in fetal RPE cells differentated during 5 weeks in a transwell set up Overall design: Samples from days 7, 14, 21, 28 and 35 were characterized. Cells were grown in a proliferation medium during the first week (EpiCM) and then in a maturation medium (MAM medium) that enahnces differentiation towards the desired phenotype.

Publication Title

HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact