refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 18 results
Sort by

Filters

Technology

Platform

accession-icon GSE77861
African American esophageal squamous cell carcinoma expression profile reveals loss of detox networks
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Esophageal carcinoma is the third most common gastrointestinal malignancy worldwide and is generally unresponsive to therapy. African Americans have an increased risk for esophageal squamous cell cancer (ESCC), the subtype that shows marked variation in geographic frequency. To identify key genes involved in ESC carcinogenesis in African Americans we conducted microarray expression profiling and found a significant dysregulation of genes encoding stress response and drug-metabolizing enzymes, mainly in NRF2 pathway. The involvement of NRF2 mediated oxidative damage represent a key step in the evolution of African American ESCC. Loss of activity of these enzymes would confer increased sensitivity of esophageal cells to xenobiotics, such as alcohol and tobacco smoke, and may account for the high incidence of ESCC in this ethnic group. The differential expression profile also indicates an inflammatory component and tissue regeneration in ESCC tumorigenesis. Together, these findings suggest a remarkable interplay of genetic and environmental factors in the pathogenesis of African American ESCC.

Publication Title

African-American esophageal squamous cell carcinoma expression profile reveals dysregulation of stress response and detox networks.

Sample Metadata Fields

Race

View Samples
accession-icon GSE65941
Oncogenic Fusion Protein EWS-FLI1 is a Network Hub that Regulates Alternative Splicing
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based upon proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncogene with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate EWS-FLI1 upon post-transcriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis including CLK1, CASP3, PPFIBP1, and TERT validate as alternatively spliced by EWS-FLI1. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNPK, and PRPF6. Reduction of EWS-FLI1 produces an isoform of g-TERT that has increased telomerase activity compared to WT TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions including DDX5 and RNA helicase A (RHA) that alters RNA splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1 showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells. Exon array analysis of 75 ES patient samples show similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing towards oncogenesis, and reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.

Publication Title

Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP117619
Inhibition of the oncogenic fusion protein EWS-FLI1 causes G2/M cell cycle arrest and enhanced vincristine sensitivity in Ewing sarcoma
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), created from a chromosomal translocation, is implicated in driving the majority of Ewing sarcomas (ES) by modulation of transcription and alternative splicing. The small molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis. We tested 69 anti-cancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G2/M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1–mediated expression of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding ubiquitin ligase UBE2C, and this in part contributed to the increase in cyclin B1. Biochemical assays revealed that YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients. Overall design: Examination of mRNA profiles of TC32 on knockdown of EWS-FLI1 or treatment with YK-4-279: 3 samples Total: 1 TC32 WT Control, 1 TC32 shEF, 1 TC32 YK

Publication Title

Inhibition of the oncogenic fusion protein EWS-FLI1 causes G<sub>2</sub>-M cell cycle arrest and enhanced vincristine sensitivity in Ewing's sarcoma.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP150586
Transcriptome of human decidual cells treated by siRNA targeting FOXO1
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Here we report the gene expression profile of in vitro cultured human endometrial stromal cells treated with siRNA targeting FOXO1 piror to eutherian differentiation media exposure. The eutherian differentiation media contains cyclic AMP (cAMP) analogue 8-Br-cAMP and the progesterone (P4) analogue medroxyprogesterone acetate (MPA). Overall design: RNA-seq on decidualizing human endometrial stromal cells treated with siRNA targeting FOXO1.

Publication Title

The mammalian decidual cell evolved from a cellular stress response.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE39079
Foam cell specific LXR ligand
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

OBJECTIVE:

Publication Title

Foam cell specific LXRα ligand.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE35844
Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MiRNAs have the potential to regulate cellular differentiation programs. However, miRNA-deficiency in primary hematopoietic stem cells (HSCs) results in HSC depletion in mice, leaving the question of whether miRNAs play a role in early-lineage decisions unanswered. To address this issue, we deleted Dicer1, which encodes an essential RNaseIII enzyme for miRNA biogenesis, in murine CCAAT/enhancer-binding protein alpha (C/EBPA)-positive myeloid-committed progenitors in vivo. In contrast to the results in HSCs, we found that miRNA depletion affected neither the number of myeloid progenitors nor the percentage of C/EBPA-positive progenitor cells. Analysis of gene-expression profiles from wild type and Dicer1-deficient granulocyte-macrophage progenitors (GMPs) revealed that 20 miRNA families were active in GMPs. Of the derepressed miRNA targets in Dicer1-null GMPs, 27% are normally exclusively expressed in HSCs or are specific for multi-potent progenitors and erythropoiesis, indicating an altered gene-expression landscape. Dicer1-deficient GMPs were defective in myeloid development in vitro and exhibited an increased replating capacity, indicating a regained self-renewal potential of these cells. In mice, Dicer1 deletion blocked monocytic differentiation, depleted macrophages and caused myeloid dysplasia with morphological features of Pelger-Hut anomaly. These results provide evidence for a miRNA-controlled switch for a cellular program of self-renewal and expansion towards myeloid differentiation in GMPs.

Publication Title

Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41942
Overexpression of miR-9 and miR-9* in 32D cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Overexpression of miR-9 and miR-9* in 32D cells, cells grown under IL-3 conditions and miR-9 and miR-9* were introduced with retroviral vectors containing about ~150 bp up and downstream of mmu-mir-9-2.

Publication Title

Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE66052
Disruption of histone methylation in developing sperm impairs offspring health transgenerationally
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66050
Disruption of histone methylation in developing sperm impairs offspring health transgenerationally [sperm]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

A fathers lifetime experiences can be transmitted to his offspring to affect

Publication Title

Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP196721
Identification of SERPINE1 as a Regulator of Glioblastoma Cell Dispersal via Analyzing Dynamic Transcriptome of Dispersing Cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

With a model mimicking GBM tumor cell dispersal, transcriptome changes between core (immotile) and dispersive (motile) cells were analyzed. Many genes are differentially expressed between these populations. This study focused on the genes that are significantly upregulated in dispersive cells. Besides gene sets related with the cell cycle and cell survival, epithelial to mesenchymal transition gene set is upregulated in dispersive cells. In this gene set, this study identified SERPINE1 gene as an important regulator of GBM cell dispersal. Overall design: Examination of core and dispersive populations' transcriptome during U373 cell spheroid dispersal. 2 sets of samples were prepared each for core and dispersive cells.

Publication Title

Identification of <i>SERPINE1</i> as a Regulator of Glioblastoma Cell Dispersal with Transcriptome Profiling.

Sample Metadata Fields

Cell line, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact