The subunits of voltage-gated calcium channels regulate surface expression and gating of CaV1 and CaV2 1 subunits, and thus contribute to neuronal excitability, neurotransmitter release and calcium-induced gene regulation. In addition certain subunits are targeted into the nucleus, where they directly interact with the epigenetic machinery. Whereas their involvement in this multitude of functions is reflected by a great molecular heterogeneity of isoforms derived from four genes and abundant alternative splicing, little is known about the roles of individual variants in specific neuronal functions. In the present study, an alternatively spliced 4 subunit lacking the variable N-terminus (4e) is identified. It is highly expressed in mouse cerebellum and cultured cerebellar granule cells (CGC) and modulates P/Q-type calcium currents in tsA cells and CaV2.1 surface expression in neurons. Compared to the other two known full-length 4 variants (4a, 4b) 4e is most abundantly expressed in the distal axon, but lacks nuclear targeting properties. To examine the importance of nuclear targeting of 4 subunits for transcriptional regulation, we performed whole genome expression profiling of CGCs from lethargic mice individually reconstituted with 4a, 4b, and 4e. Notably, the number of genes regulated by each 4 splice variant correlated with the rank order of their nuclear targeting properties (4b> 4a> 4e). Together these findings support isoform-specific functions of 4 splice variant in neurons, with 4b playing a dual role in channel modulation and gene regulation, while the newly detected 4e variant serves exclusively in calcium channel-dependent functions.
Differential neuronal targeting of a new and two known calcium channel β4 subunit splice variants correlates with their regulation of gene expression.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer.
Specimen part
View SamplesCyclin E1 (CCNE1) is amplified in various tumor types including high-grade serous ovarian cancer where it is associated with poor clinical outcome. We have demonstrate that suppression of the Cyclin E1 partner kinase, CDK2, induces apoptosis in a CCNE1 amplicon-dependent manner. Little is known of mechanisms of resistance to CDK inhibitors. We therefore generated OVCAR-3 sublines with reduced sensitivity to CDK2 inhibitors and profiled by gene expression microarrays.
Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome.
No sample metadata fields
View SamplesWe used microarrays to profile the expression levels of 285 ovarian samples in order to identify molecular subtypes of the tumour
Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome.
No sample metadata fields
View SamplesWe used microarrays to profile the expression levels of 5 tumour samples
Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome.
No sample metadata fields
View SamplesWe used unsupervised hierarchical clustering to analyse expression in primary ovarian tumors and associated abdominal deposits. GeneGo pathway analysis of differentially expressed genes between primary tumors and deposits revealed 4 of the top 10 pathways related to cytoskeleton remodeling and cell adhesion.
LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic classification of serous ovarian cancer with adjacent borderline differentiates RAS pathway and TP53-mutant tumors and identifies NRAS as an oncogenic driver.
Disease, Disease stage, Subject
View SamplesLow-grade serous ovarian carcinomas are typically Ras-pathway mutated, TP53 wild-type, have limited chromosomal aberration, and are frequently associated with borderline tumors. By contrast, high-grade serous ovarian carcinoma lack Ras-pathway mutations, are invariably TP53 mutated, show widespread genomic change, and are commonly BRCA-pathway disrupted. We sought to identify differentially expressed genes between co-existing borderline and invasive components of serous carcinoma.
Genomic classification of serous ovarian cancer with adjacent borderline differentiates RAS pathway and TP53-mutant tumors and identifies NRAS as an oncogenic driver.
Disease, Disease stage, Subject
View SamplesEpstein-Barr virus is associated with several human malignancies, including Burkitt Lymnphoma. The virus encodes more than 40 microRNAs, which participate in its possible pathogenetic role.
Molecular signature of Epstein Barr virus-positive Burkitt lymphoma and post-transplant lymphoproliferative disorder suggest different roles for Epstein Barr virus.
Specimen part, Cell line
View Samples