We previously reported a pathogenic de novo W342 mutation in the transcriptional corepressor CtBP1 in four independent patients with neurodevelopmental disabilities. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CtBP1 mutation. Within this cohort we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia and tooth enamel defects present in all patients. The W342 mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cells lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. Our results suggest that context-dependent relief of transcriptional repression of the CtBP1 mutant W342 allele may contribute to deregulation of apoptosis in target tissues of patients leading to neurodevelopmental phenotypes. Overall design: Total RNA samples were isolated from 3 different cultures of HTB17 cells that overexpressed CtBP1 wt or the pathogenic mutant, W342 and analyzed by high- throughput RNA sequencing.
A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity.
Specimen part, Cell line, Subject
View SamplesType I interferons were discovered as the primary antiviral cytokines and are now known to serve critical functions in host defense against bacterial pathogens. Accordingly, established mediators of interferon antiviral activity may mediate previously unrecognized antibacterial functions. RNase-L is the terminal component of an RNA decay pathway that is an important mediator of interferon-induced antiviral activity. Here we identify a novel role for RNase-L in the host antibacterial response. RNase-L-/- mice exhibited a dramatic increase in mortality following
An essential role for the antiviral endoribonuclease, RNase-L, in antibacterial immunity.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combination of Ibrutinib and ABT-199 in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma.
Disease stage
View SamplesDiffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are the most prevalent B-lymphocyte neoplasms in which abnormal activation of the Brutons tyrosine kinase (BTK)mediated B-cell receptor (BCR) signaling pathway contributes to pathogenesis. Ibrutinib is an oral covalent BTK inhibitor that has shown some efficacy in both indications. To improve ibrutinib efficacy through combination therapy, we first investigated differential gene expression in parental and ibrutinib-resistant cell lines to better understand the mechanisms of resistance. Ibrutinib-resistant TMD8 cells had higher BCL2 gene expression and increased sensitivity to ABT-199, a BCL-2 inhibitor. Consistently, clinical samples from ABC-DLBCL patients who experienced poorer response to ibrutinib had higher BCL2 gene expression. We further demonstrated synergistic growth suppression by ibrutinib and ABT-199 in multiple ABC-DLBCL, GCB-DLBCL, and FL lymphoma cell lines. The combination of both drugs also reduced colony formation, increased apoptosis, and inhibited tumor growth in a TMD8 xenograft model. A synergistic combination effect was also found in ibrutinib-resistant cells generated by either genetic mutation or drug treatment. Together, these findings suggest a potential clinical benefit from ibrutinib and ABT-199 combination therapy.
Combination of Ibrutinib and ABT-199 in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma.
Disease stage
View SamplesDiffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are the most prevalent B-lymphocyte neoplasms in which abnormal activation of the Brutons tyrosine kinase (BTK)mediated B-cell receptor (BCR) signaling pathway contributes to pathogenesis. Ibrutinib is an oral covalent BTK inhibitor that has shown some efficacy in both indications. To improve ibrutinib efficacy through combination therapy, we first investigated differential gene expression in parental and ibrutinib-resistant cell lines to better understand the mechanisms of resistance. Ibrutinib-resistant TMD8 cells had higher BCL2 gene expression and increased sensitivity to ABT-199, a BCL-2 inhibitor. Consistently, clinical samples from ABC-DLBCL patients who experienced poorer response to ibrutinib had higher BCL2 gene expression. We further demonstrated synergistic growth suppression by ibrutinib and ABT-199 in multiple ABC-DLBCL, GCB-DLBCL, and FL lymphoma cell lines. The combination of both drugs also reduced colony formation, increased apoptosis, and inhibited tumor growth in a TMD8 xenograft model. A synergistic combination effect was also found in ibrutinib-resistant cells generated by either genetic mutation or drug treatment. Together, these findings suggest a potential clinical benefit from ibrutinib and ABT-199 combination therapy.
Combination of Ibrutinib and ABT-199 in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma.
No sample metadata fields
View Samples