refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 336 results
Sort by

Filters

Technology

Platform

accession-icon GSE16452
Human BE(2)-C neuronal responses to type I IFN stimulation and WEEV infection
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE16450
Human BE(2)-C neuronal responses to type I IFN stimulation
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human neuronal differentiation alters responsiveness to innate immune stimuli and virus infections.

Publication Title

Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE16451
Human BE(2)-C neuronal responses to WEEV infection
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human neuronal differentiation alters responsiveness to innate immune stimuli and virus infections.

Publication Title

Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE41779
Current injection and distal wound response in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

These data represent two experiments, one on wounding leaves and one based on injecting current into leaves. We first analyzed transcript levels in leaf 13 when leaf 8 was wounded. Transcripts levels in leaf 8 were then analyzed after current injection. Sample handling and normalisations were identical between experiments.

Publication Title

GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE4847
Expression data from tocopherol deficient seedlings of Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Tocopherols (Vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol deficient mutant loci were used to examine how tocopherol deficiency impacts global gene expression during the critical peroid of germination and early seedling development when tocopherols are essential. vte1 lacks all tocopherols, but accumulates the tocopherol pathway intermediate DMPBQ,. vte2 which lacks all tocopherols and pathway intermediates.

Publication Title

Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants.

Sample Metadata Fields

Age

View Samples
accession-icon GSE8588
OH-PBDE-induced gene expression profiling in H295R adrenocortical carcinoma cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Polybrominated diphenyl ethers (PBDEs) are commonly used as flame retardants in a variety of commercial and household products. They have been detected in the environment and accumulate in mammalian tissues and fluids. PBDE toxicity is thought to be associated with endocrine disruption, developmental neurotoxicity and changes in fetal development. Although humans are exposed to PBDEs, our knowledge of the effects of PBDE metabolites on human cells with respect to health risk is insufficient. Two hydroxylated PBDEs (OH-PBDEs), 2-OH-BDE47 and 2-OH-BDE85, were investigated for their effects on cell viability/proliferation, DNA damage, cell cycle distribution and gene expression profiling in H295R adrenocortical carcinoma cells. We show that the two agents are cytotoxic in a dose-dependent manner only at micromolar concentrations, with 2-OH-BDE85 being more toxic than 2-OH-BDE47. However, no DNA damage was observed for either chemical, suggesting that the biological effects of OH-PBDEs occur primarily via non-genotoxic routes. Furthermore, no evidence of aryl hydrocarbon receptor (AHR)-mediated, dioxin-like toxicity was observed. Instead, we report that a micromolar concentration of OH-PBDEs induces transcriptional changes associated with endoplasmic reticulum stress and the unfolded protein response. We discuss whether OH-PBDE bioaccumulation could result in impairment of the adrenocortical secretory function.

Publication Title

Cytotoxicity and gene expression profiling of two hydroxylated polybrominated diphenyl ethers in human H295R adrenocortical carcinoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56658
Transcription profiling by array of the response of Arabidopsis cultivar Columbia etiolated seedlings and undifferentiated tissue culture cells to the spaceflight environment
  • organism-icon Arabidopsis thaliana
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

transcriptome response of Arabidopsis cultivar Columbia etiolated seedlings and undifferentiated tissue culture cells to the spaceflight environment

Publication Title

Spaceflight transcriptomes: unique responses to a novel environment.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE23643
Cardiac transcriptome profiles of S.LEW congenic strain compared with the hypertensive Dahl S rat
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Despite inheritance of hypertension in families, identifying genetic mechanisms predisposing individuals to hypertension has remained challenging. The effects of single genes contributing to the development of hypertension may not be readily detected in individuals whose genomes also contain other genetic factors that resist hypertension. By using a highly permissive rat genome for inherited hypertension, we demonstrate that increased expression of one such gene, Rififylin (Rffl), is a novel inherited risk factor for hypertension and increased mortality. Animals overexpressing Rffl demonstrated delayed endocytic recycling, accumulated polyubiquitinated proteins, increased beats/min of neonatal cardiomyocytes, had shorter QT-intervals and developed salt-insensitive hypertension very early in their life (50-52 days). Thus, the discovery of a physiological link between overexpression of rififylin and the development of hypertension constitutes a novel mechanism that could be targeted for rectifying normal QT-interval and preventing hypertension.

Publication Title

Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short-QT interval and hypertension.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE65840
Root transcriptome of ninja-1
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

A major role of NINJA is to repress root jasmonate signalling and allow normal cell elongation.

Publication Title

Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22515
DEFINING A RAT BLOOD PRESSURE QUANTITATIVE TRAIT LOCUS TO A <81.8KB CONGENIC SEGMENT: COMPREHENSIVE SEQUENCING AND RENAL TRANSCRIPTOME ANALYSIS.
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Evidence from multiple linkage and genome-wide association studies suggest that human chromosome 2 (HSA2) contains alleles that influence blood pressure (BP). Homologous to a large segment of HSA2 is rat chromosome 9 (RNO9), to which a BP quantitative trait locus (QTL) was previously mapped. The objective of the current study was to further resolve this BP QTL. Eleven congenic strains with introgressed segments spanning <81.8kb to <1.33Mb were developed by introgressing genomic segments of RNO9 from the Dahl salt-resistant (R) rat onto the genome of the Dahl salt-sensitive (S) rat and tested for BP. The congenic strain with the shortest introgressed segment spanning <81.8kb significantly lowered BP of the hypertensive S rat by 25 mm Hg and significantly increased its mean survival by 45 days. In contrast, two other congenic strains had increased BP compared with the S. We focused on the <81.8kb congenic strain which represents the shortest genomic segment to which a BP QTL has been definitively mapped to date in any species. Sequencing of this entire region in both S and R rats detected 563 variants. The region did not contain any known or predicted rat protein coding genes. Further, a whole genome renal transcriptome analysis between S and the <81.8kb S.R congenic strain revealed alterations in several critical genes implicated in renal homeostasis. Taken together, our results provide the basis for future studies to examine the relationship between the candidate variants within the QTL region and the renal differentially expressed genes as potential causal mechanisms for BP regulation.

Publication Title

Defining a rat blood pressure quantitative trait locus to a &amp;lt;81.8 kb congenic segment: comprehensive sequencing and renal transcriptome analysis.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact