Duplicated genes escape gene loss by conferring a dosage benefit or evolving diverged functions. The yeast Saccharomyces cerevisiae contains many duplicated genes encoding ribosomal proteins. Prior studies have suggested that these duplicated proteins are functionally redundant and affect cellular processes in proportion to their expression. In contrast, through studies of ASH1 mRNA in yeast, we demonstrate paralog-specific requirements for the translation of localized mRNAs. Intriguingly, these paralog-specific effects are limited to a distinct subset of duplicated ribosomal proteins. Moreover, transcriptional and phenotypic profiling of cells lacking specific ribosomal proteins reveals differences between the functional roles of ribosomal protein paralogs that extend beyond effects on mRNA localization. Finally, we show that ribosomal protein paralogs exhibit differential requirements for assembly and localization. Together, our data indicate complex specialization of ribosomal proteins for specific cellular processes, and support the existence of a ribosomal code.
Functional specificity among ribosomal proteins regulates gene expression.
No sample metadata fields
View SamplesMetastasis to lymph nodes is an early and prognostically important event in the progression of many human cancers, and is associated with expression of vascular endothelial growth factor-D (VEGF-D). Changes to lymph node vasculature occur during metastasis, and may establish a metastatic niche capable of attracting and supporting tumor cells.
A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth.
Sex, Specimen part
View SamplesMuscle denervation due to injury, disease or aging results in impaired motor function. Restoring neuromuscular communication requires axonal regrowth and regeneration of neuromuscular synapses. Muscle activity inhibits neuromuscular synapse regeneration. The mechanism by which muscle activity regulates regeneration of synapses is poorly understood. Dach2 and Hdac9 are activity-regulated transcriptional co-repressors that are highly expressed in innervated muscle and suppressed following muscle denervation. Here, we report that Dach2 and Hdac9 inhibit regeneration of neuromuscular synapses. Importantly, we identified Myog and Gdf5 as muscle-specific Dach2/Hdac9-regulated genes that stimulate neuromuscular regeneration in denervated muscle. Interestingly, Gdf5 also stimulates presynaptic differentiation and inhibits branching of regenerating neurons. Finally, we found that Dach2 and Hdac9 suppress miR206 expression, a microRNA involved in enhancing neuromuscular regeneration. Overall design: RNAseq on innervated and 3 day denervated adult soleus muscle from wildtype mice is compared with that from 3 day denervated soleus muscle from Dach2/Hdac9 deleted mice to identify Dach2/Hdac9-regulated genes.
Dach2-Hdac9 signaling regulates reinnervation of muscle endplates.
No sample metadata fields
View SamplesTo understand the funtion of Colorectal cancer GWAS results, we perform a comprehensive analysis using biofeatures of HCT116 colon cancer cell line and got a list of risk-asscociated SNP. Risk-associated SNP are likely exerting their effects through promoters or enhancer. In order to understand the importance of the genes with risk-associated SNP in their promoters and enhancers'' putatively targeted genes, we did a comparison of these genes between HCT116 colon cancer cell and normal colon and try to understand their function Overall design: Two biological replicates of HCT116 were compared to the data of two normal colon samples already deposited in GEO (GSM1010974 and GSM1010942).
Functional annotation of colon cancer risk SNPs.
No sample metadata fields
View SamplesWhile transcriptional regulation of stem cell self-renewal and differentiation has been extensively studied, only a small number of studies have addressed the roles for post-translational modifications in these processes. A key mechanism of post-translational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Using UPS-targeted RNAi screens, we identify novel regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme, Psmd14, and the E3 ligase, Fbxw7, and characterize their importance in ES cell pluripotency and cellular reprogramming.
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
Specimen part, Cell line
View SamplesWhile transcriptional regulation of stem cell self-renewal and differentiation has been extensively studied, only a small number of studies have addressed the roles for post-translational modifications in these processes. A key mechanism of post-translational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Using UPS-targeted RNAi screens, we identify novel regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme, Psmd14, and the E3 ligase, Fbxw7, and characterize their importance in ES cell pluripotency and cellular reprogramming.
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
Specimen part, Cell line
View SamplesMicroRNAs have emerged as major genetic elements in the genesis and suppression of cancer. Here, multi-dimensional cancer genome analysis and validation has defined a novel Glioblastoma Multiforme (GBM) tumor suppressor pathway and mechanism of action centered on Quaking (QK), a member of the STAR family of RNA-binding proteins. Combined functional, biochemical and computational studies establish that p53 directly regulates QK gene expression, QK protein binds and stabilizes miR-20a of the cancer-relevant miR-17-92 cluster, and miR-20a in turn functions to regulate TGFR2 and the TGF signaling network. Linkage of these pathway components is supported by their genome and expression status across GBM specimens and by their gain- and loss-of-function interactions in in vitro and in vivo complementation studies. This p53-QK-miR-20a axis expands our understanding of the p53 tumor suppression network in cancer and reveals a novel tumor suppression mechanism involving regulation of specific cancer-relevant microRNAs.
STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA.
Specimen part, Cell line
View SamplesIdentify potential QK-regulated mRNAs and linked pathways by comparing the transcriptional profiles of shGFP- and shQK-transduced human Hs683 cells
STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA.
Cell line
View SamplesIdentify potential QK-regulated mRNAs and linked pathways by comparing the transcriptional profiles of shGFP- and shQK-transduced Ink4a/Arf-/- Pten-/- primary mouse astrocytes
STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA.
No sample metadata fields
View Samples