MCL cell lines were treated with DMSO or 5uM AFN700 for 20hrs
Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma.
Cell line, Treatment
View SamplesMCL lines (biological replicates) were treated with DMSO or 2.5uM Sotrastaurin for 3hrs
Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma.
No sample metadata fields
View SamplesMCL lines were treated with or without 100ng/ml doxycycline for 7 days
Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma.
Cell line, Treatment
View SamplesMuscle denervation due to injury, disease or aging results in impaired motor function. Restoring neuromuscular communication requires axonal regrowth and regeneration of neuromuscular synapses. Muscle activity inhibits neuromuscular synapse regeneration. The mechanism by which muscle activity regulates regeneration of synapses is poorly understood. Dach2 and Hdac9 are activity-regulated transcriptional co-repressors that are highly expressed in innervated muscle and suppressed following muscle denervation. Here, we report that Dach2 and Hdac9 inhibit regeneration of neuromuscular synapses. Importantly, we identified Myog and Gdf5 as muscle-specific Dach2/Hdac9-regulated genes that stimulate neuromuscular regeneration in denervated muscle. Interestingly, Gdf5 also stimulates presynaptic differentiation and inhibits branching of regenerating neurons. Finally, we found that Dach2 and Hdac9 suppress miR206 expression, a microRNA involved in enhancing neuromuscular regeneration. Overall design: RNAseq on innervated and 3 day denervated adult soleus muscle from wildtype mice is compared with that from 3 day denervated soleus muscle from Dach2/Hdac9 deleted mice to identify Dach2/Hdac9-regulated genes.
Dach2-Hdac9 signaling regulates reinnervation of muscle endplates.
No sample metadata fields
View SamplesThe heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription after a heat shock found in lower eukaryotes. Overall design: RNA-Seq was performed on mRNA isolated from quadriceps femoris muscle of 24 mice. These mice were of wild type, R6/2, and Hsf1-/- genotypes. Two mice of each genotype were tested in four conditions: (1) heat shock, (2) control heat shock, (3) HSP90 inhibition (NVP-HSP990), and (4) HSP90 inhibition vehicle.
HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.
Age, Specimen part, Treatment, Subject
View SamplesThe goal of this study was to assess whether the presence of HLA-B*35 contributes to activation of ER stress/UPR and inflammation in lcSScPAH PBMC.
The HLA-B*35 allele modulates ER stress, inflammation and proliferation in PBMCs from Limited Cutaneous Systemic Sclerosis patients.
Specimen part
View SamplesGastric cancer is still one of the most common causes of cancer-related death worldwide, which is mainly attributable to late diagnosis and poor treatment options. Infection with H. pylori, different environmental factors and genetic alterations are known to influence the risk of developing gastric tumors. However, the molecular mechanisms involved in gastric carcinogenesis are still not fully understood, making it difficult to design targeted therapeutic approaches.
The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells.
Specimen part, Cell line, Treatment, Time
View SamplesTissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates
Specification of tissue-resident macrophages during organogenesis.
Specimen part, Subject, Time
View SamplesWe constructed a polycistronic lentiviral vector to overexpress 3 germ cell specific genes (Stella, Oct4 and Nanos2) in mouse embryonic fibroblast (MEFs) and evaluated the transcriptome portrait in partially reprogrammed cells.We sequenced RNA samples from bulk cell population of two biological duplicates of MEF-GFP (control) and MEF-SON (overexpressed) 21 days post infection. Differential expression analysis of 50 M pair-end read per samples showed overexpression of neurogenesis, blood vessel and proliferation related genes and downregulation of chondroitin sulphate metabolic process, nitric oxide production and innate immune response genes. Overall design: Examination of whole transcriptome following concurrent overexpression of Stella, Oct4 and Nanos2 in MEFs.
Suppression of dsRNA response genes and innate immunity following Oct4, Stella, and Nanos2 overexpression in mouse embryonic fibroblasts.
Specimen part, Cell line, Subject
View SamplesTissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates
Specification of tissue-resident macrophages during organogenesis.
Specimen part, Subject, Time
View Samples