refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 75 results
Sort by

Filters

Technology

Platform

accession-icon GSE43940
Analysis of embryonic day E14.5 and E16.5 mouse ureters from Tshz3LacZ/LacZ mutants and wild types
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In the urinary tract, smooth muscle (SM) is present in the renal pelvis, the ureter, the bladder and the urethra and plays a crucial role in the functional and structural integrity of these organs. In Tshz3 mutant ureters the myogenic program is not activated in the proximal region due to the absence of expression of myocardin (Myocd), a key regulator of SM differentiation. We set out to characterize TSHZ3-dependent mechanisms that participate to the process of ureteric smooth muscle cells (SMC) differentiation.

Publication Title

The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32350
Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE32348
Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin (mRNA)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Multiple signaling pathways ultimately modulate the epigenetic information embedded in the chromatin of gene promoters by recruiting epigenetic enzymes. We found that, in estrogen-regulated gene programming, the acetyltransferase CREB-binding protein (CBP) is specifically and exclusively methylated by the coactivator-associated arginine methyltransferase (CARM1) in vivo. CARM1-dependent CBP methylation and p160 coactivators were required for estrogen-induced recruitment to chromatin targets. Notably, methylation increased the histone acetyltransferase (HAT) activity of CBP and stimulated its autoacetylation. Comparative genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) studies revealed a variety of patterns by which p160, CBP, and methyl-CBP (meCBP) are recruited (or not) by estrogen to chromatin targets. Moreover, significant target gene-specific variation in the recruitment of (1) the p160 RAC3 protein, (2) the fraction of a given meCBP species within the total CBP, and (3) the relative recruitment of different meCBP species suggests the existence of a target gene-specific fingerprint for coregulator recruitment. Crossing ChIP-seq and transcriptomics profiles revealed the existence of meCBP hubs within the network of estrogen-regulated genes. Together, our data provide evidence for an unprecedented mechanism by which CARM1-dependent CBP methylation results in gene-selective association of estrogen-recruited meCBP species with different HAT activities and specifies distinct target gene hubs, thus diversifying estrogen receptor programming.

Publication Title

Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE25899
Paternally-induced transgenerational environmental reprogramming of metabolic gene expression in mammals
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE25896
Paternally-induced transgenerational environmental reprogramming of metabolic gene expression in mammals (Affymetrix)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Epigenetic information can be inherited through the mammalian germline, and represents a plausible transgenerational carrier of environmental information. To test whether transgenerational inheritance of environmental information occurs in mammals, we carried out an expression profiling screen for genes in mice that responded to paternal diet.

Publication Title

Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067241
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (IVF)
  • organism-icon Mus musculus
  • sample-icon 280 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: IVF was carried out using oocytes from females fed Control diet (C) and sperm from males fed Control diet or Low Protein diet (LP). Zygotes were then developed 2 cell (2C), 4 cell (4C), 8 cell (8C), Morula (M) or Blastocyst (B) embryonic developmental stages when single embryo RNA seq was carried out to study gene expression changes.

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP067082
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (single embryo)
  • organism-icon Mus musculus
  • sample-icon 187 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: Zygotes were generated by IVF from animals fed a control diet. These embryos were then microinjected with various combinations of small RNAs and control RNA (HIS3.3::GFP). Follwoing injections the zygotes were developed and allowed to develop until 2 cell (2C) or 4 cell (4C) stage when single embryo RNA seq was carried out to study gene expression changes

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP067085
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (ICSI)
  • organism-icon Mus musculus
  • sample-icon 103 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: Zygotes were generated by ICSI from oocytes/females fed a Control diet and sperm/males fed either a Control or Low Protein diet. The sperm was isolated from either the Rete testis or the Cauda epididymis and injected either as a whole sperm or just the sperm head. Following fertilization by ICSI the zygotes developed for 28 hours (2C stage) and were harvested for single-embryo RNA-Seq.

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE6085
Expression data from Murine T cell in response to IL-2 at 10 time points in 24 hours after IL-2 treatment
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The cytokine IL-2 determines T cell fate by controlling T cell proliferation and differentiation, but the expression files of IL-2 regulated genes are not defined

Publication Title

Identification of expression patterns of IL-2-responsive genes in the murine T cell line CTLL-2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150460
RNA-seq data in WT, roX1, roX2, roX1roX2 mutants in D. melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Study of single and double mutants of the two roX RNAs in D. melanogaster Overall design: Study of single and double mutants of the two roX RNAs in D. melanogaster

Publication Title

RNA-on-X 1 and 2 in Drosophila melanogaster fulfill separate functions in dosage compensation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact