Maternal smoking has a severe negative effect on all stages of pregnancy that in consequence impairs fetal growth and development. Tobacco smoke-related defects are well established at the clinical level; however, little is known about molecular mechanisms underlying these pathological conditions. We thus employed a genomic approach to determine transcriptome alterations induced by maternal smoking in pregnancy. We assayed gene expression profiles in peripheral blood (M) leukocytes and placentas (PL) of pregnant smokers and those without significant exposure, and in cord blood (D) leukocytes of their babies. Comparative analyses defined significant deregulation of 193 genes in M cells, 329 genes in placentas, and 49 genes in D cells of smokers. These genes were mainly involved in xenobiotic metabolism, oxidative stress, inflammation, immunity, hematopoiesis, trophoblast differentiation, and vascularization. Functional annotation of the deregulated genes outlined processes and pathways affected by tobacco smoke. In smoker newborns, we identified several deregulated pathways associated with autoimmune diseases. The study demonstrates a limited ability of placenta to modulate toxic effects of maternal tobacco use at the gene expression level.
Transcriptome alterations in maternal and fetal cells induced by tobacco smoke.
Age, Specimen part, Subject
View SamplesPassive smoke intake by pregnant women may have detrimental effects such as spontaneous abortion, lower birth weight, stillbirth, and reduced infant lung function. To extend our knowledge on molecular effects of tobacco smoke exposure in pregnancy, we analyzed transcriptome alterations in passive smokers (PS) and compared them to those in active smokers (AS). Using Illumina Expression Beadchip with 24,526 transcript probes, gene expression patterns were assayed in placentas from PS (N=25) exposed to environmental tobacco smoke (ETS) throughout pregnancy and non-exposed (NS) counterparts (N=35), and in cord blood cells from their newborns. The ETS exposure was evaluated by questionnaire disclosure and cotinine measurement in maternal and cord bloods. A total of 196 genes were significantly deregulated in placentas of PS compared to NS. These genes were primary associated with extracellular matrix, apoptosis, blood clotting, response to stress, embryonic morphogenesis, and lipid metabolism. Cord blood of newborns of PS displayed differential expression of 116 genes encoding mainly neuronal factors, regulators of immunologic response, and protooncogenes. Gene ontology analyses highlighted some important biological processes that might be associated with placental insufficiency and fetal growth restriction in PS, such as fatty acid catabolism, coagulation, regulation of growth, and response to steroid hormone stimulus. The study demonstrates that even low dose exposure to ETS during pregnancy leads to the significant deregulation of transcriptional regulation in placental and fetal cells. The data suggest the effect of ETS on the fetus is primary indirect, mediated via deregulation of placental functions. Comparison of PS and AS indicated that ETS exposure and active smoking in pregnancy partly employ the same molecular mechanisms.
Deregulation of gene expression induced by environmental tobacco smoke exposure in pregnancy.
Age
View SamplesBackground: Differences in breast cancer outcomes according to race/ethnicity have been reported. Hispanic/Latino (H/L) populations are a genetically admixed and heterogeneous group, with variable fractions of European, Indigenous American and African ancestries. Some studies suggest that breast cancer-specific mortality is higher in U.S. Hispanic/Latinas compared to non-Hispanic Whites (NHW) even after adjustment for socioeconomic status and education. The molecular profile of breast cancer has been widely described in NHWs but equivalent knowledge is lacking in Hispanic/Latinas. We have previously reported that the most prevalent breast cancer intrinsic subtype in Colombian H/L women was Luminal B as defined by surrogate St. Gallen 2013 criteria. In this study we explored ancestry-associated differences in molecular profiles of Luminal B tumors among these highly admixed women. Methods: We performed whole-transcriptome RNA-seq analysis in 42 Luminal tumors (21 Luminal A and 21 Luminal B) from Colombian women. Genetic ancestry was estimated from a panel of 80 ancestry-informative markers (AIM). We categorized patients according to Luminal subtype and to the proportion of European and Indigenous American ancestry and performed differential expression analysis comparing Luminal B against Luminal A tumors according to the assigned ancestry groups. Results: We found 5 genes potentially modulated by genetic ancestry: ERBB2 (Fold Change = 2.367, padj < 0.01), GRB7 (Fold Change = 2.327, padj < 0.01), GSDMB (Fold Change = 1.723, padj < 0.01, MIEN1 (Fold Change = 2.195, padj < 0.01 and ONECUT2 (Fold Change = 2.204, padj < 0.01). In the replication set we found a statistical significant association between European ancestry fraction and the expression levels of ERBB2 (p = 0.02, B = 2.49) and ONECUT2 (p = 0.04, B = -4.87). We also observed statistical significant associations for ERBB2 expression with Indigenous American ancestry (p < 0.001, B = 3.82). This association was not biased by the distribution of HER2+ tumors among the groups analyzed. Conclusions: Our results suggest that genetic ancestry in Hispanic/Latina women might modify ERBB2 gene expression in Luminal tumors. Further analyses are needed to confirm these findings and explore their prognostic value. Overall design: RNA profile of 42 luminal breast cancer tumors (21 luminal A and 21 luminal B) from Colombian patients
Ancestry as a potential modifier of gene expression in breast tumors from Colombian women.
No sample metadata fields
View SamplesWe report RNA-sequencing data of 12 platelet samples isolated from four healthy individuals and incubated with either E. coli K12, E. coli O18 or no bacteria. This dataset highlights the differential effect of bacteria on spliced platelet RNA profiles. Overall design: Blood platelets were isolated from whole blood in citrate-coated BD Vacutainers by standard centrifugation and multiple washing steps. Total RNA was extracted from the platelet pellet, subjected to cDNA synthesis and SMARTer amplification, fragmented by Covaris shearing, and prepared for sequencing using the TruSeq Nano DNA Sample Preparation Kit. Subsequently, pooled sample libraries were sequenced on the Illumina HiSeq 2500 platform. All steps were quality-controlled using Bioanalyzer 2100 with RNA 6000 Picochip, DNA 7500 and DNA High Sensitivity chips measurements. For further downstream analyses, reads were quality-controlled using Trimmomatic, mapped to the human reference genome using STAR, and intron-spanning reads were summarized using HTseq.
Impact of Escherichia coli K12 and O18:K1 on human platelets: Differential effects on platelet activation, RNAs and proteins.
Specimen part, Disease, Subject
View Samples