refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 180 results
Sort by

Filters

Technology

Platform

accession-icon GSE16741
Gene Expression in Mutant P0 Cre Dicer Mouse Sciatic Nerves
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The hypothesis is that genes involved in the immature schwann cell and promyelinating state will be upregulated and genes that are involved in the myelnating state will be down regulated.

Publication Title

MicroRNA-deficient Schwann cells display congenital hypomyelination.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40610
Expression data from a Charcot-Marie-Tooth 1B neuropathy mouse model
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We have generated mouse models of real CMT1B mutations in the gene encoding for myelin protein zero (P0). One of these mutants, P0S63del is retained in the ER where it elicits an unfolded protein response (UPR). Genetic ablation of the UPR factor CHOP restores the motor capacity in S63del mice. We used microarray to decipher the molecular mechanism undelying the P0S63del neuropathy and the rescue in S63del/Chop null nerves.

Publication Title

Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE51650
Expression data from Gdap1 knock-out (deletion of exon 5) mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

GDAP1 is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. Gdap1 knockout mice, mimicking genetic alterations of patients suffering from severe CMT forms, develop an age-related, hypomyelinating peripheral neuropathy.

Publication Title

The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP071661
YAP/TAZ control peripheral myelination by regulating Schwann cell proliferation and the expression of laminin receptors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Myelination is essential for nervous system function. Schwann cells interact with neurons and with the basal lamina to sort and myelinate axons, using known receptors and signaling pathways. In contrast, the transcriptional control of axonal sorting and the role of mechano-transduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. Here, we describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice we show that Taz is required in Schwann cells for radial sorting and myelination. Yap is redundant with Taz as ablation of both Yap and Taz abolishes radial sorting. Yap/Taz regulate Schwann cell proliferation and transcription of basal lamina receptors, both necessary for proper radial sorting of axons, and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells. Overall design: 3 cKO and 3 control wild-type mice

Publication Title

YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP119636
Integration of genome-wide analysis to characterize long noncoding RNAs in diverse immune cell types of the stage IV melanoma patients
  • organism-icon Homo sapiens
  • sample-icon 127 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We investigated the expression profiles in the CD4+, CD8, and CD14+ peripheral blood cells (PBLs) of the stage IV melanoma patients and the healthy donors. Overall design: Examination of long noncoding RNA in the CD4+, CD8, and CD14+ peripheral blood cells (PBLs) of the stage IV melanoma patients and the healthy donors.

Publication Title

Integrative Genome-Wide Analysis of Long Noncoding RNAs in Diverse Immune Cell Types of Melanoma Patients.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP136484
Viral shRNA Knockdown of INS Promotor Activity in EndoC-ßH1 Cells 
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To inhibit INS expression, we used shRNA to target the INS promoter. We find that knocking down INS expression with such an shRNA targeting the INS promoter significantly affects expression of 259 genes. Overall design: mRNA profiles of EndoC ßH1 with or without shRNA targetting INS promoter were generated by deep sequencing, in triplicate, using Illumina Hiseq 2500.

Publication Title

<i>Insulin</i> promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE89524
Identification of differentially expressed miRNAs between SW480 and SW620 spheroid cultures
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE89523
Identification of differentially expressed genes between SW480 and SW620 spheroid cultures [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The colorectal cancer (CRC) cell line pair SW480/SW620 is an accepted model to study CRC progression and metastasis formation. Studying gene expression differences might allow to uncover molecular mechanisms that underlie metastasis initiation

Publication Title

The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE89963
RNA profiling of mouse mammary tumor cell redirection in vitro model.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We have developed an in vitro system of cancer cell redirection that employs the 1:50 ratio of cancer cells to normal cells. Using our in vitro system of cancer cell redirection we investigated the genetic profiles of erbB2-overexpressing mammary tumor-derived cells as they undergo the redirection phenomenon.

Publication Title

RNA Expression Profiling Reveals Differentially Regulated Growth Factor and Receptor Expression in Redirected Cancer Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31628
Gene expression profiles of DFCs and SHED 48 hours after in vitro transfection with a TP53 plasmid, a SP1 plasmid, or an empty vector.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Dental follicle is a loose connective tissue that surrounds the developing tooth. Dental follicle cells (DFCs) have a promising potential for tissue engineering applications including periodontal and bone regeneration. However, little is known about the molecular mechanisms underlying osteogenic differentiation. In a previous study we detected that more than 35 % of genes that are regulated during osteogenic differentiation of DFCs have promoter binding sites for the transcription factors TP53 and SP1. However, the role of these transcription factors in dental stem cells is still unknown. We hypothesize that both factors influence the processes of cell proliferation and differentiation in dental stem cells. Therefore, we transiently transfected DFCs and dental pulp stem cells (SHED; Stem cells from human exfoliated decidiuous teeth) with expression vectors for these transcription factors. After overexpression of SP1 and TP53, SP1 influenced cell proliferation and TP53 osteogenic differentiation in both dental cell types. The effects on cell proliferation and differentiation were less pronounced after siRNA mediated silencing of TP53 and SP1. This indicates that the effects we observed after TP53 and SP1 overexpression are indirect and subject of complex regulation. Interestingly, upregulated biological processes in DFCs after TP53-overexpression resemble the downregulated biological processes in SHED after SP1-overexpression. Here, regulated processes are involved in cell motility, wound healing and programmed cell death. In conclusion, our study demonstrates that SP1 and TP53 influence cell proliferation and differentiation and similar biological processes in both SHED and DFCs.

Publication Title

Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact