Pro-inflammation triggered by microbial lipopolysaccharide (LPS) through Toll-like receptor (TLR) 4 in the presence of interferon (IFN)-g induces cytokine secretion in dendritic cells (DCs) tightly regulated by a defined differentiation program. This DC differentiation is characterized by a dynamic immune activating but also tolerance inducing phenotype associated with irreversible down-modulation of cytokines. CD40L on activated T cells further modifies DC differentiation. Using DNA micro arrays we showed down-regulated mRNA levels of TLR signaling molecules while CD40/CD40L signaling molecules were up-regulated at a time when LPS/IFN-g activated DCs have ceased cytokine expression. Accordingly we demonstrated that CD40/CD40L but not TLR4 or TLR3 signaling mediated by LPS or poly (cytidylic-inosinic) acid (poly I:C) and dsRNA re-established the capacity to secret interleukin (IL)-12 in LPS/IFN-g activated DCs, which have exhausted their potential for cytokine secretion. This resulting TH1 polarizing DC phenotype which lacked accompanying secretion of the crucial immune suppressive IL-10 - enhanced activation of cytotoxic T lymphocytes (CTLs). We therefore conclude that immune modulation is restricted to a secondary T-cell mediated stimulus at an exhausted DC state which prevents an immune tolerant DC phenotype. These findings impacts on the rational design of TLR activated DC-based cancer vaccines for the induction of anti-tumoral CTL responses.
CD40 ligation restores type 1 polarizing capacity in TLR4-activated dendritic cells that have ceased interleukin-12 expression.
No sample metadata fields
View SamplesTo inhibit INS expression, we used shRNA to target the INS promoter. We find that knocking down INS expression with such an shRNA targeting the INS promoter significantly affects expression of 259 genes. Overall design: mRNA profiles of EndoC ßH1 with or without shRNA targetting INS promoter were generated by deep sequencing, in triplicate, using Illumina Hiseq 2500.
<i>Insulin</i> promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism.
Specimen part, Cell line, Treatment, Subject
View SamplesPurpose: Primary cutaneous squamous cell carcinoma (SCC) can be an invasive cancer in skin and has the potential to metastasize. We aimed to define the cancer related molecular changes that distinguish non-invasive from invasive SCC.
Gene expression profiling of the leading edge of cutaneous squamous cell carcinoma: IL-24-driven MMP-7.
Subject
View SamplesOrgan transplant recipients (OTRs) on Cyclosporine A (CSA) are prone to catastrophic cutaneous squamous cell carcinoma (SCC). Allograft-sparing, cancer-targeting systemic treatments are unavailable. We have shown increased risk for catastrophic SCC in OTRs via CSA-mediated induction of Interleukin-22 (IL-22). Herein, we found CSA drives SCC proliferation and tumor growth through IL-22 and JAK/STAT pathway induction. We in turn inhibited SCC growth with an FDA-approved JAK 1/2 inhibitor, Ruxolitinib. In human SCC cells, greatest proliferative response to IL-22 and CSA treatment occurred in non-metastasizing lines. IL-22 treatment upregulated JAK1 and STAT1/3 in A431 SCC cells. JAK/STAT pathway genes were highly expressed in tumors from a cohort of CSA-exposed OTRs, and in SCC with high risk for metastasis. Compared to immunocompetent SCC, genes associated with innate immunity, response to DNA damage and p53 regulation were differentially expressed in SCC from OTRs. In nude mice engrafted with human A431 cells, IL-22 and CSA treatment increased tumor growth and upregulated IL-22 receptor, JAK1 and STAT 1/3 expression. Ruxolitinib treatment significantly reduced tumor volume and reversed the accelerated tumor growth. CSA and IL-22 exacerbate aggressive behavior in SCC. Targeting the IL-22 axis via selective JAK/STAT inhibition may reduce the progression of aggressive SCC in OTRs, without compromising immunosuppression.
Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma.
No sample metadata fields
View SamplesPost-translational regulation of the MYC Transcription Factor (TF), including its phosphorylation and ubiquitination, plays an important role in determining cell proliferation and apoptosis and has been implicated in tumorigenesis. Using a computational systems biology approach, followed by biochemical and functional validation, we have characterized the role of the STK38 kinase, an NDR family serine-threonine kinase, as a key modulator of MYC transcriptional activity in human B cells, affecting MYC protein stability in a signal-dependent fashion. Specifically, we show that in human B lymphoma ST486 cells STK38 is a key mediator of BCR pathway signaling, affecting MYC protein turnover and its phosphorylation at Ser62 in kinase-activity-dependent manner. STK38 inactivation abrogates apoptosis following BCR activation while its silencing mediates MYC protein degradation via canonical proteolytic pathways. This suggests that STK38 could provide an effective therapeutic target in MYC-dependent malignancies.
STK38 is a critical upstream regulator of MYC's oncogenic activity in human B-cell lymphoma.
Cell line, Time
View SamplesBackground; Basal cell carcinoma (BCC) is the most common cancer in humans. The pathogenesis of BCC is associated with the sonic hedgehog (SHH) signaling pathway. Vismodegib, a smoothened inhibitor, that targets this pathway is now in clinical use for advanced BCC patients, but its efficacy is limited. Therefore, new therapeutic options for this cancer are required. Methods; We studied gene expression profiling of BCC tumour tissue coupled with laser capture microdissection to identify tumor specific receptor tyrosine kinase expression that can be targeted by small molecule inhibitors. The expression of selected molecules was confirmed by quantitative RT-PCR (qRT-PCR) and by immunohistochemistry. The action of kinase inhibitors was examined on primary normal human epidermal keratinocytes. Results; We found a >250 fold change increase (false discovery rate <10-4) of the oncogene, anaplastic lymphoma kinase (ALK) as well as its ligands, pleiotrophin and midkine in BCC compared to microdissected normal epidermis. qRT-PCR confirmed increased expression of ALK (p<0.05). Stronger staining of phosphorylated ALK in BCC tumour nests than normal skin was observed by immunohistochemistry. Additionally, Crizotinib, an FDA-approved ALK inhibitor, reduced keratinocyte proliferation in culture, whereas a c-Met, another receptor tyrosine kinase, inhibitor did not. Crizotinib significantly reduced the expression of GLI1 and CCND2 mRNA by approximately 60% and 20%, respectively (p<0.05). Conclusions; Our data suggest that ALK may increase GLI1 expression in parallel with the conventional SHH-pathway and promotes keratinocyte proliferation. Furthermore, an ALK inhibitor alone or in combination with targeting SHH-pathway molecules may be a potential treatment for BCC patients.
Identification of anaplastic lymphoma kinase as a potential therapeutic target in Basal Cell Carcinoma.
Specimen part, Subject
View SamplesZaire ebolavirus (ZEBOV) infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP1,2) is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP1,2 (VLPVP40-GP) triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLPVP40 (particles lacking GP1,2) caused an aberrant response. Notably, some cellular interferon-inducible genes were upregulated six hours after exposure to virions and LPS, but not after exposure to VLPVP40-GP. This suggests that GP1,2 binding to macrophages plays an important role in the immediate cellular response.
Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression.
Disease, Disease stage, Subject
View SamplesTreatment-related morbidities have been linked to the large post-operative treatment volumes required for external beam partial breast irradiation (PBI). Alternative PBI techniques require equipment that is not readily available. To address these issues, we designed a phase I trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response.
FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target.
Specimen part
View SamplesIntroduction: Breast radiotherapy is currently one size fits all regardless of breast cancer subtype (eg. luminal, basal). However, recent clinical data suggests that radiation response may vary significantly among subtypes. Therefore, current practice leads to over- or under-treatment of women whose tumors are more or less radiation responsive. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. Methods: We exposed 16 biologically-diverse breast tumor cell lines to 0 or 5GY radiation. Microarray analysis was performed on RNA harvested from those cell lines. Samples were run in triplicate. Following quality assessment, differential gene expression analysis was performed using a two-way multiplicative linear mixed-effects model. A candidate radiation response biomarkers with biologically plausible role in radiation response, were identified and confirmed at the RNA and protein level with qPCR and Western blotting assays. Induction in human breast tumors was confirmed in 32 patients with paired pre- and post-radiation tumor samples using IHC and microarray analysis. Quantification of protein was performed in a blinded manner and included positive and negative controls.
FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target.
Specimen part, Cell line
View SamplesMouse lymphoma cells were co-cultured with endothelial cells in serum/cytokine-free condition. To identify specific genetic changes, we compared lymphoma cells cultured in medium containing 10% fetal bovine serum with lymphoma cells co-cultured with endothelial cells.
Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance.
Specimen part
View Samples