refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 738 results
Sort by

Filters

Technology

Platform

accession-icon GSE43794
Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC Virus
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Viral infections of the CNS are of increasing concern, especially among immunocompromised populations. Rodent models are often inappropriate for studies of CNS infection, as many viruses, including JC Virus (JCV) and HIV, cannot replicate in rodent cells. Consequently, human fetal brain-derived multipotential CNS progenitor cells (NPCs) that can be differentiated into neurons, oligodendrocytes, or astrocytes, have served as a model for CNS studies. NPCs can be non-productively infected by JCV, while infection of progenitor-derived astrocytes (PDAs) is robust. We profiled cellular gene expression at multiple times during differentiation of NPCs to PDAs. Several activated transcription factors show commonality between cells of the brain in which JCV replicates and lymphocytes in which JCV is likely latent. Bioinformatic analysis determined transcription factors that may influence the favorable transcriptional environment for JCV in PDAs. This study attempts to provide a framework for understanding the functional transcriptional profile necessary for productive JCV infection.

Publication Title

Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC virus.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE58841
Effect of HPV 16 E6, E7 oncoproteins on the expression level of cellular genes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The life cycle of human papillomaviruses (HPV) is strictly linked to the differentiation of their natural host cells. The HPV E6 and E7 oncoproteins can delay the normal differentiation program of keratinocytes, however, the exact mechanisms responsible for this have not yet been identified. The goal of this study was to investigate the effects of HPV16 oncoproteins on the expression of genes involved in keratinocyte differentiation. Primary human keratinocytes transduced by LXSN (control) retroviruses or virus vectors expressing HPV16 E6, E7 or E6/E7 genes were subjected to gene expression profiling. The results of microarray analysis showed that HPV 16 E6 and E7 have the capacity to down-regulate the expression of several genes involved in keratinocyte differentiation. Quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to confirm microarray data. To investigate the effects of the HPV oncoproteins on the promoters of selected keratinocyte differentiation genes, luciferase reporter assays were performed. Our results suggest that the HPV 16 E6 and/or E7 oncogenes are able to down-regulate the expression of several genes involved in keratinocyte differentiation, at least partially by down-regulating their promoter activity. This activity of the HPV oncoproteins may have a role in the productive virus life cycle, and also in virus induced carcinogenesis.

Publication Title

Transcriptional regulation of genes involved in keratinocyte differentiation by human papillomavirus 16 oncoproteins.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45639
Clonal Immortalized Human Glial Cell Lines Support Varying Levels of JC Virus Infection due to Differences in Cellular Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

JC virus (JCV) is a ubiquitous human polyomavirus that causes the demyelinating disease Progressive Multifocal Leukoencephalopathy (PML). JCV replicates in limited cell types in culture, predominantly in human glial cells. Thus, productive JCV infection is an indicator of the host cell transcription environment. Following introduction of a replication defective SV40 mutant that expressed large T protein into a heterogeneous culture of human fetal brain cells, multiple phenotypes became immortalized (SVG cells). A subset of SVG cells could support JCV replication. This mixed culture was called SVG cells. In the current study, clonal cell lines were selected from the original SVG cell culture. The SVG-5F4 clone showed low levels of viral growth. The SVG-10B1 clone was highly permissive for JCV DNA replication and gene expression. Microarray analysis revealed that viral infection did not significantly change gene expression in these cells. More resistant 5F4 cells expressed high levels of transcription factors known to inhibit JCV transcription. Interestingly, 5F4 cells highly expressed RNA of markers of Bergman or radial glia and 10B1 cells had high expression of markers of immature glial cells and activation of transcription regulators important for stem/progenitor cell self-renewal. These SVG-derived clonal cell lines provide a biologically relevant model to investigate cell type differences in JCV host range and pathogenesis, as well as neural development.

Publication Title

Clonal immortalized human glial cell lines support varying levels of JC virus infection due to differences in cellular gene expression.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE43270
Genome wide-DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HumanMethylation27 BeadChip (HumanMethylation27_270596_v.1.2), Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE43191
Genome wide-DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients (gene expression)
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HumanMethylation27 BeadChip (HumanMethylation27_270596_v.1.2), Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

The aim of this study is to identify, for the first time, the genome-wide DNA methylation profiles of human articular chondrocytes from OA and healtly cartilage samples.

Publication Title

Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE21383
Expression data from porcine ovary tissue of sows from two prolificacy levels
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Previous results from a genome scan in a F2 Iberian by Meishan intercross showed several chromosome regions associated with litter size traits. In order to identify candidate genes underlying these QTL we have performed an ovary gene expression analysis during pregnancy. F2 sows were ranked by their estimated breeding values for prolificacy, the six sows with higher EBV (HIGH prolificacy) and the six with lower EBV (LOW prolificacy) were selected. Samples were hybridized to Affymetrix porcine expression microarrays. The statistical analysis with a mixed-model approach identified 221 differentially expressed probes, representing 189 genes. These genes were functionally annotated in order to identify the genetic pathways overrepresented. Among the most represented functional groups the first one was immune system response activation against external stimulus. The second group was made up of genes which regulate the maternal homeostasis by complement and coagulation cascades. The last group was involved on lipid and fatty acid enzymes of metabolic processes, which participate in steroidogenesis pathway. In order to identify powerful candidate genes for prolificacy, the second approach of this study was merging microarray data with position information of QTL affecting litter size, previously detected in the same experimental cross. According to this, we have identified 27 differentially expressed genes co-localized with QTL for litter size traits, which fulfill the biological, positional and functional criteria.

Publication Title

Differential gene expression in ovaries of pregnant pigs with high and low prolificacy levels and identification of candidate genes for litter size.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10898
Transcriptome architecture across tissues in the pig
  • organism-icon Sus scrofa
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask what are the relative contributions of breed or sex when assessed across tissues.

Publication Title

Transcriptome architecture across tissues in the pig.

Sample Metadata Fields

Age

View Samples
accession-icon GSE12837
Gene expression in human myeloid cells.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.

Publication Title

Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12803
Gene expression in human myeloid cells
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.

Publication Title

Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69252
Gene expression profiling in NK cells of patients infected with Leishmania mexicana
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of this study was to identify differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized (LCL) and diffuse (DCL) cutaneous leishmaniasis through gene expression profiling, in an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL.

Publication Title

Down-Regulation of TLR and JAK/STAT Pathway Genes Is Associated with Diffuse Cutaneous Leishmaniasis: A Gene Expression Analysis in NK Cells from Patients Infected with Leishmania mexicana.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact