refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 45 results
Sort by

Filters

Technology

Platform

accession-icon GSE54717
Basonuclin-1 modulates epithelial plasticity and TGF-1-induced loss of epithelial cell integrity
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE54716
Basonuclin-1 modulates epithelial plasticity and TGF-1-induced loss of epithelial cell integrity [NIAC-NTR]
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

TGF-b1-stimulation induces an epithelial dedifferentiation-process, throughout which epithelial cell sheets disintegrate and gradually switch into fibroblastic-appearing cells (EMT-like transition). The purpose of these profiles was to identify differentially expressed genes that are regulated transcriptionally. Standard microarry-based gene expression profiles measure steady-state RNA but do not provide insight into underlying regulatory principles. NIAC-NTR-based gene expression profiling (Kenzelmann et al., PNAS, 2007) essentially enables the dissection of transcriptionally versus non-transcriptionally regulated genes within respective analysed time-frames. Briefly, NIAC-NTR relies on incorporation of 4sU (thio-uridine) into nascent RNA, which can subsequently be specifically isolated by custom-made columns. Total- and enriched (4sU-labeled) are then further processed for microarray gene expression profiling by standard procedures. This dataset complements previously released data of NIAC-NTR-based gene expression profiling of cells treated with TGF-b1 and 4sU for 2hrs [GSE23833].

Publication Title

Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE54715
Basonuclin-1 modulates epithelial plasticity and TGF-1-induced loss of epithelial cell integrity [BNC1]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

TGF-b1-stimulation induces an epithelial dedifferentiation-process, throughout which epithelial cell sheets disintegrate and gradually switch into fibroblastic-appearing cells (EMT-like transition). Several transcription factors, some of them being TGF-b1-responsive, are functionally involved in such a switch and affect epithelial differentiation and plasticity.

Publication Title

Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE23833
The Forkhead factor FoxQ1 influences epithelial differentiation
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Forkhead family of transcription factors comprises numerous members and is implicated in various cellular functions, including cell growth, apoptosis, migration and differentiation.In this study we identified the Forkhead factor FoxQ1 as increased in expression during TGF-beta1 induced changes in epithelial differentiation, suggesting functional roles of FoxQ1 for epithelial plasticity.The repression of FoxQ1 in mammary epithelial cells led to a change in cell morphology characterized by an increase in cell size, pronounced cell-cell contacts and an increased expression of several junction proteins (e.g. E-cadherin). In addition, FoxQ1 knock-down cells revealed rearrangements in the actin-cytoskeleton and slowed down cell cycle G1-phase progression.Furthermore, repression of FoxQ1 enhanced the migratory capacity of coherent mammary epithelial cells.Gene expression profiling of NM18 cells indicated that FoxQ1 is a relevant downstream mediator of TGF-beta1 induced gene expression changes. This included the differential expression of transcription factors involved in epithelial plasticity, e.g. Ets-1, Zeb1 and Zeb2.In summary, this study has elucidated the functional impact of FoxQ1 on epithelial differentiation

Publication Title

The Forkhead factor FoxQ1 influences epithelial differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE63164
Expression data from Zeb1 knockdown NM18 cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Differentiation of epithelial cells is strongly affected by transcription factors related to epithelial to mesenchymal-like progression.

Publication Title

Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE34936
NOD genetic variation influences ab/gd lineage decisions when TCRa is prematurely expressed, but not the process of negative selection.
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Thymic negative selection is functional in NOD mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE34934
Expression data from BDC2.5 TCR Tg, preselected Rag-/-.B6 and Rag-/-.NOD.H2b thymocytes upon antigenic stimulation
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study was to quantify the impact of NOD genetic vatiation on thymic negative selection transcriptional programs.

Publication Title

Thymic negative selection is functional in NOD mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE34935
Expression data from BDC2.5 TCR Tg thymocytes on B6g7 and NOD background
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study was to quantify the impact of NOD genetic vatiation on the transcriptional programs induced by the alpha beta-TCR at the DN to DP transition in the BDC2.5 TCR Tg model

Publication Title

Thymic negative selection is functional in NOD mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE37535
PPAR is a major driver of the accumulation and phenotype of adipose-tissue Treg cells
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE37532
Gene expression profile of regulatory T cells (Tregs) isolated from visceral adipose tissue and lymph nodes of mice sufficient and deficient of Pparg expression in Tregs
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We identified Pparg as a major orchestrator of the phenotype of adipose-tissue resident regulatory T cells (VAT Tregs). To establish the role of Pparg in shaping the VAT Tregs gene profile and cell dynamics, Tregs from lymph nodes and visceral adipose tissue of mice sufficient and deficient of Pparg expression in Tregs were double sorted for microarray analysis.

Publication Title

PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact