Murine B cells can be activated via the surface receptors TLR4 and CD40. For a global assessment of differences in gene expression between these two different modes of B cell activation a genome wide transcriptome analysis was performed. In order to dissect different gene expression profiles of B cells, activation was induced by LPS or LPS + anti-CD40 for 24h and 72h. Both activation states were compared to each other but also to nave B cells.
IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases.
Sex, Specimen part
View SamplesThe goal of this study was to identify the molecular characteristics and putative markers distinguishing IL-10eGFP+CD138hi and IL-10eGFP-CD138hi plasmocytes. To this end, IL-10eGFP B-green mice were challenged intravenously with Salmonella typhimurium (strain SL7207, 10e7 CFU), and IL-10eGFP+CD138hi as well as IL-10eGFP-CD138hi plasmocytes were isolated from the spleen on the next day. For this, single cell suspensions were prepared, cells were treated with Fc block (10 g/ml, anti-CD16/CD32, clone 2.4G2), and then stained with an antibody against CD138 conjugated to PE (1/400; from BD Pharmingen) followed by incubation with anti-PE microbeads (Miltenyi Biotech). CD138+ cells were then enriched on Automacs (Miltenyi Biotech) using the program possel_d2. Cells were then stained with anti-CD19-PerCP, anti-CD138-PE, and antibodies against CD11b, CD11c, and TCR conjugated to APC as a dump channel to exclude possible contaminants. DAPI was added to exclude dead cells. Live IL-10eGFP+CD138hi and IL-10eGFP-CD138hi cells were subsequently isolated on a cell sorter. The purity of the samples was always above 98%. This led to the identification of LAG-3 as a cell surface receptor specifically expressed on IL-10eGFP+CD138hi cells but not on IL-10eGFP-CD138hi cells.
LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells.
Sex, Specimen part
View SamplesWe perform microarray analysis of HUVECs upon stimulation with virulent wildtype C. albicans strain SC5314 or its efg1/efg1 cph1/cph1 hyphal-deficient derivative strain CAN34 to compare the gene expression profiles elicited from HUVECs in response to these strains. In addition, these responses are compared to that of TNF-alpha induced responses to determine which responses are Candida-specific.
Transcriptome profile of the vascular endothelial cell response to Candida albicans.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.
Specimen part
View SamplesSingle nucleotide polymorphisms (SNP) can affect mRNA gene expression, in a tissue-specific manner. In this work we survey association of SNP alleles with mRNA gene expression in human dorsal root ganglions (DRG) to gain insights into pathophysiology of pain phenotypes.
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.
Specimen part
View SamplesSingle nucleotide polymorphisms (SNP) can affect mRNA gene expression, in a tissue-specific manner. In this work we survey association of SNP alleles with mRNA gene expression in human dorsal root ganglions (DRG) to gain insights into pathophysiology of pain phenotypes.
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.
Specimen part
View SamplesExtracorporeal photochemotherapy (ECP) is widely used to treat cutaneous T cell lymphoma, graft versus host disease and allografted organ rejection. Its clinical and experimental efficacy in both cancer immunotherapy and autoreactive disorders suggests a novel mechanism. This study reveals that ECP induces a high percentage of processed monocytes to enter the dendritic antigen presenting cell (DC) differentiation pathway, as determined by expression of relevant genes. The resulting DC are capable of processing and presentation of exogenous antigen and are largely maturationally synchronized, as assessed by the level of expression of co-stimulatory surface molecules. Principal component analysis of the ECP-induced monocyte transcriptome indicates that activation or suppression of more than 3500 genes produces a reproducible distinctive molecular signature. Pathway analysis suggests that DC maturation may be triggered by transient adherence of passaged monocytes to plasma proteins coating the ECP plastic ultraviolet exposure plate. Co-incubation with lymphocytes, simultaneously induced by ECP to undergo apoptosis, may accelerate conversion of monocytes to DC. The efficiency with which ECP induces new functional DC supports the possibility that these cells participate prominently in the clinical successes of the treatment. ECP may offer a practical source of DC for use in a spectrum of immunotherapeutic trials.
Rapid generation of maturationally synchronized human dendritic cells: contribution to the clinical efficacy of extracorporeal photochemotherapy.
Disease, Disease stage
View SamplesDouble-stranded RNA (dsRNA) can enter different pathways in mammalian cells, including sequence-specific RNA interference, sequence-independent interferon response and editing by adenosine deaminases. To assess the potential of expressed dsRNA to induce interferon stimulated genes in somatic cells, we performed microarray analysis of HEK293 and HeLa cells transfected with a MosIR plasmid expressing an mRNA with a long inverted repeat structure in its 3UTR (MosIR) or with a parental MosIR plasmid (without inverted repeat) as a control.
dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2.
Disease
View SamplesSenataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.
Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2.
No sample metadata fields
View Samples