Cortical interneurons display a remarkable diversity in their morphology, physiological properties and connectivity. Elucidating the molecular determinants underlying this heterogeneity is essential for understanding interneuron development and function. We discovered that alternative splicing differentially regulates the integration of somatostatin- and parvalbumin-expressing interneurons into nascent cortical circuits through the cell-type specific tailoring of mRNAs. Specifically, we identified a role for the activity-dependent splicing regulator Rbfox1 in the development of cortical interneuron subtype specific efferent connectivity. Our work demonstrates that Rbfox1 mediates largely non-overlapping alternative splicing programs within two distinct but related classes of interneurons. Overall design: RNA-seq of FACS sorted PV+ and SST+ cortical interneuronals at P8 of wt and conditional Rbfox1 Kos
Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons.
Specimen part, Subject
View SamplesAPE1 was knocked down using siRNA in low passage patient-derived PDAC cells and the resulting cells, along with control cells were analysed using scRNA-seq to identify differentially expressed genes and pathways as a result of APE1 knock-down. Overall design: siRNA APE1 knock-down versus scrambled control, The SMARTer system was used to generate cDNA from 96 captured single cells. Unstranded 2x100bp reads were sequenced using a HiSeq2500 on rapid run mode in 1 lane.
APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma - characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing.
Subject
View SamplesAmong the dendritic cell (DC) subsets, plasmacytoid DCs are thought to be important in both generating antiviral and antitumor responses. These cells may be useful in developing dendritic cell-based tumor vaccines, however, the rarity of these cells in the peripheral blood have hampered attempts to understand their biology. To provide better insight into the biology of plasmacytoid DCs, we isolated these cells from the peripheral blood of healthy donors in order to further characterize their gene expression. Using gene array technology we compared the genetic profiles of these cells to those of CD14+ monocytes isolated from the same donors and found several immune related genes upregulated in this cell population. Understanding the genetic profiles of this dendritic cell subtype as well as others such as the BDCA-1 expressing myeloid DCs may enable us to manipulate these cells ex-vivo to generate enhanced DC-based tumor vaccines inducing more robust antitumor responses.
Genetic profiles of plasmacytoid (BDCA-4 expressing) DC subtypes-clues to DC subtype function in vivo.
No sample metadata fields
View SamplesPitx3 is a transcription factor that is expressed in all midbrain dopaminergic (mDA) neurons during early development, but later becomes restricted in dopaminergic subsets of substantia nigra compacta (SNc) and of the ventral tegmental are (VTA) that are vulnerable to neurodegenerative stress (MPTP, 6-OHDA, rotenone, Parkinson's disease). Overall, in mice, Pitx3 is required for developmental survival of ventral SNc neurons and for postnatal survival of VTA neurons (after postnatal day 40). With the aim of determining the gene networks that distinguish Pitx3-vulnerable (Pitx3-positive) from Pitx3-resistant (Pitx3-negative) subsets of SNc and VTA, we performed a comparison at the transcriptome level between FAC-sorted mDA neurons of SNc and VTA that were obtained from wild-type and Pitx3-/- newborn mice. The latter mice have already lost the majority of their TH+Calb1- mDA neurons of ventral SNc (Pitx3-dependent), but their TH+Calb1+ neurons of dorsal SNc (Pitx3-independent), including all of VTA neurons (50% are Pitx3-dependent and 50% Pitx3-independent), are unaffected by Pitx3 deletion. At postnatal day 40, Pitx3-/- mice display a marked loss of dopaminergic subsets of VTA that normally co-express Pitx3 and Calb1 (Pitx3-dependent neurons of VTA).
Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra.
Specimen part
View SamplesWe have discovered subsets of axon guidance molecules and transcription factors that are enriched in specific subsets of olfactory sensory neurons. We have demonstrated guidance activity for three of the candidate axon guidance genes we identified, suggesting that this approach is an efficient method for characterizing guidance systems relevant to olfactory axon targeting. Overall design: Single-cell RNASeq of OMP-expressing olfactory sensory neurons was performed by capture on Fluidigm-C1 followed by sequencing on Illumina HiSeq2500
Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons.
No sample metadata fields
View SamplesPseudomonas aeruginosa is a re-emerging opportunistic pathogen with broad antimicrobial resistance. We have previously reported that the major siderophore pyoverdine from this pathogen disrupts mitochondrial networks and induces a lethal hypoxic response in model host Caernorhabditis elegans. However, the mechanism of such cytotoxicity remained unclear. Here, we demonstrate that pyoverdine translocates into host cells, binding to host ferric iron sources. The reduction of host iron content disrupts mitochondrial function such as NADH oxidation and ATP production and activates mitophagy. This activates a specific immune response that is distinct from colonization-based pathogensis and exposure to downstream pyoverdine effector Exotoxin A. Host response to pyoverdine resembles that of a hypoxic crisis or iron chelator treatment. Furthermore, we demonstrate that pyoverdine is a crucial virulence factor in P. aerguinosa pathogenesis against cystic fibrosis patients; F508 mutation in human CFTR increases susceptibility to pyoverdine-mediated damage.
Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response.
Specimen part, Treatment
View SamplesIn this study, we used the Affymetrix HG-U133A 2.0 GeneChip for deriving a multigenic classifier capable of predicting HCV+cirrhosis with vs without concomitant HCC.
Identifying genes for establishing a multigenic test for hepatocellular carcinoma surveillance in hepatitis C virus-positive cirrhotic patients.
Specimen part, Disease, Disease stage
View SamplesIdentification of genes involved in trophoblast differentiation is of great interest in understanding cellular and molecular mechanisms involved in placental development and is relevant clinically to fetal development, fertility, and maternal health. To understand, on a global scale, changes in the transcriptome during the differentiation of hESCs down the trophoblast lineage, a large-scale microarray analysis was performed. This work provides an in vitro functional genomic model with which to identify genes involved in trophoblast development.
Transcriptomic signature of trophoblast differentiation in a human embryonic stem cell model.
Specimen part, Cell line
View SamplesThe implantation process begins with attachment of the trophectoderm (TE) of the blastocyst to the maternal endometrial epithelium. Herein we have investigated the transcriptome of mural TE cells from 13 human blastocysts and compared these with those of human embryonic stem cell (hESC)-derived-TE (hESCtroph). The transcriptomes of hESFtroph at days 8, 10, and 12 had the greatest consistency with TE. Among genes coding for secreted proteins of the TE of human blastocysts and of hESCtroph are several molecules known to be involved in the implantation process as well as novel ones, such as CXCL12, HBEGF, inhibin A, DKK3, Wnt 5A, follistatin. The similarities between the two lineages underscore some of the known mechanisms and offer discovery of new mechanisms and players in the process of the very early stages of human implantation. We propose that the hESCtroph is a viable functional model of human trophoblasts to study trophoblast-endometrial interactions. Furthermore, the data derived herein offer the promise of novel diagnostics and therapeutics aimed at practical challenges in human infertility and pregnancy disorders associated with abnormal embryonic implantation.
Comparative transcriptome analysis of human trophectoderm and embryonic stem cell-derived trophoblasts reveal key participants in early implantation.
No sample metadata fields
View SamplesSexual differentiation in zebrafish is complex. Although zebrafish sex determination is primarily genetic, hormonal and environmental factors can influence sexual development. 17 alpha-methyltestosterone (MT), a synthetic androgen, induces female-to-male sex reversal in zebrafish. MT treatment is routinely used in aquaculture for production of all-male populations. However, the molecular mechanisms underlying 17 alpha-methyltestosterone induced gonad masculinisation in fish are poorly understood.In this study, we analysed gonad transcriptomes of zebrafish treated with 17 alpha-methyltestosterone during gonadal development (from 20 dpf to 40 dpf and 60 dpf) and compared them with testis and ovary transcriptomes of untreated zebrafish. These data improve our understanding of the role of androgens in teleost sex differentiation.
Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development.
No sample metadata fields
View Samples