refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 109 results
Sort by

Filters

Technology

Platform

accession-icon GSE11904
Gene expression analysis in primary human renal tumors, categorized by VHL genotype and HIF-alpha expression
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Human renal cell carcinomas (RCC) have differential expression of HIF-1alpha and HIF-2alpha, depending on VHL genotype and other events.

Publication Title

HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE39987
Oncogenic NRAS Signaling Differentially Regulates Survival and Proliferation in Melanoma.
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39984
Comparison of the genetic extinction of NRAS to pharmacological MEK inhibition in an inducible mouse model of melanoma
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Since direct pharmacological inhibition of RAS has thus far been unsuccessful, we explored system biology approaches to identify synergistic drug combination(s) that can mimic direct RAS inhibition. Leveraging an inducible mouse model of NRAS-mutant melanoma, we compare pharmacological MEK inhibition to complete NRAS-Q61K extinction in vivo. NRAS-Q61K extinction leads to a complete and durable tumor regression by enhancing both apoptosis and cell cycle arrest. By contrast, MEK inhibition only produces tumor stasis at best and we find that it robustly activates apoptosis but does not significantly impede proliferation.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39985
A timecourse analysis of the genetic extinction of NRAS in an inducible mouse model of melanoma.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We sought to understand the pathways involved in NRAS extinction over time using a doxycycline-dependent, inducible mouse model of melanoma. This data provides insights into the temporal dynamics of downstream NRAS signaling and helps to correlate differentially affected pathways.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34554
Notch1-driven transcriptional changes in a mouse model of T-ALL
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

T-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling. In this study we used a mouse model of T-ALL through the overexpression of the intarcellular transcriptionally active part of Notch1 (N1-IC). This model faithfully recapitulates the major characteristics of the human disease. Comparison of the leukemic cells from peripheral tumors(thymoma) of this mouse model to normal thymic cells Double Positive (DP) for the markers CD4 and CD8 that express very low levels of Notch1 showed major expression changes in pathways controlling the transition from physiology to disease. Further correlation of the data to ChIP-Seq data from the same cell populations led us to identify a hitherto unknown antagonism of the Notch1 oncogenic pathway and the polycomb complex (PRC2) in leukemia. Importantly exome sequencing in primary samples from human patients with T-ALL revealed that the PRC2 complex is frequently mutated and inactivated, further supporting the tumor suppressor role of the complex in this disease.

Publication Title

Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE58721
BRAF inhibition leads to oxidative phosphorylation and cellular senescence in human melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Targeting components of the mitogen-activated protein kinase (MAPK) pathway prolongs survival of patients with advanced BRAFV600E melanomas but such an approach is not curative because of the rapid acquisition of numerous resistance mechanisms. Here we analyze melanoma cells that evade MAPK inhibitors by undergoing a senescence-like, slow-growth, phenotype, which leads to acquired resistance. The initial therapeutic response is characterized by an integrated stress response program, including stimulation of autophagic flux, activation of the endoplasmic reticulum machinery, and an enhanced ability of detoxifying reactive oxygen species. Reversibly senescent cells also exhibit an increase in mitochondrial genome copy number and a strong metabolic shift towards oxidative phosphorylation (OxPhos). Inducing mitochondrial dysfunction by co-targeting the MAPK pathway and mitochondrial Hsp90-directed protein folding with specific inhibitors prevented entry of cells into a reversibly senescent state, suppressed mitochondrial energy metabolism and augmented therapy response.

Publication Title

Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors.

Sample Metadata Fields

Disease, Disease stage, Cell line, Time

View Samples
accession-icon GSE17925
Gene expression from TCDD treated C57BL6/J and human Aryl hydrocarbon Receptor expressing primary mouse hepatocytes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The human and mouse aryl hydrocarbon receptor (hAHR and mAHRb) share limited (58%) transactivation domain sequence identity. Compared to the mAHRb allele, the hAHR displays 10-fold lower relative affinity for prototypical ligands such as 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). However, in previous studies we have demonstrated that the hAHR can display a higher relative ligand binding affinity than the mAHRb for specific AHR ligands such as indirubin. Each receptor has also been shown to differentially recruit LXXLL co-activator-motif proteins and to utilize different TAD subdomains in gene transactivation. Using hepatocytes isolated from C57BL6/J mice (Ahrb/b) and AHRTtr transgenic mice which express hAHR protein specifically in hepatocytes, we investigated whether the hAHR and mAHRb differentially regulate genes. Microarray and quantitative-PCR analysis of Ahrb/b and AHRTtr primary-mouse hepatocytes treated with 10 nM TCDD revealed that a number of established AHR target genes such as Cyp1a1 and Cyp1b1 are significantly induced by both receptors. Remarkably, of the 1752 genes induced by mAHRb and 1186 genes induced by hAHR, only 265 genes (<10%) were significantly activated by both receptors in response to TCDD. Conversely of the 1100 and 779 genes significantly repressed in mAHRb and hAHR hepatocytes respectively, only 462 (<25%) genes were significantly repressed by both receptors in response to TCDD treatment. Genes identified as differentially expressed are known to be involved in a number of biological pathways, including cell proliferation and inflammatory response which suggests that compared to the mAHRb, the hAHR may play contrasting roles in TCDD-induced toxicity and endogenous AHR-mediated gene regulation.

Publication Title

Differential gene regulation by the human and mouse aryl hydrocarbon receptor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15037
Foxo1 target genes in mouse T cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD4+ and CD8+ T cells isolated from wild-type and Foxo1-deficient mice were analyzed by global gene expression profiling with Affymetrix array MOE 430 2.0. Results indicate Foxo1 regulates the expression of genes encoding positive regulators of T cell activation, differentiation, homeostasis, cell adhesion, cell migration, and cellular stress responses.

Publication Title

An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23167
Expression data from DC-induced Hopx-deficient and sufficient regulatory T cells after immunization
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We found that Hopx is required for the function of DC-induced regulatory T cells in vivo. We used microarrays to identify relevant Hopx-targets in such cells after antigenic re-challenge in vivo.

Publication Title

The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell-mediated peripheral T cell unresponsiveness.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21682
Gene expression study of macrophages during early foreign body reaction
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Foreign body reaction (FBR), initiated by adherence of macrophages to biomaterials, is associated with several complications.

Publication Title

Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact