refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 109 results
Sort by

Filters

Technology

Platform

accession-icon GSE14990
MYC regulation of a "poor prognosis" metastatic cancer cell state
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MYC regulation of a "poor-prognosis" metastatic cancer cell state.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE14987
Expression data from ERBB2 over-expression and EGF stimulation in MCF10A cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression data from ERBB2 over-expression and EGF stimulation in MCF10A cells

Publication Title

MYC regulation of a "poor-prognosis" metastatic cancer cell state.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE14988
Expression data from DHT stimulation vs. control in LNCaP cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression data from DHT stimulation vs. control in LNCaP cells

Publication Title

MYC regulation of a "poor-prognosis" metastatic cancer cell state.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE17925
Gene expression from TCDD treated C57BL6/J and human Aryl hydrocarbon Receptor expressing primary mouse hepatocytes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The human and mouse aryl hydrocarbon receptor (hAHR and mAHRb) share limited (58%) transactivation domain sequence identity. Compared to the mAHRb allele, the hAHR displays 10-fold lower relative affinity for prototypical ligands such as 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). However, in previous studies we have demonstrated that the hAHR can display a higher relative ligand binding affinity than the mAHRb for specific AHR ligands such as indirubin. Each receptor has also been shown to differentially recruit LXXLL co-activator-motif proteins and to utilize different TAD subdomains in gene transactivation. Using hepatocytes isolated from C57BL6/J mice (Ahrb/b) and AHRTtr transgenic mice which express hAHR protein specifically in hepatocytes, we investigated whether the hAHR and mAHRb differentially regulate genes. Microarray and quantitative-PCR analysis of Ahrb/b and AHRTtr primary-mouse hepatocytes treated with 10 nM TCDD revealed that a number of established AHR target genes such as Cyp1a1 and Cyp1b1 are significantly induced by both receptors. Remarkably, of the 1752 genes induced by mAHRb and 1186 genes induced by hAHR, only 265 genes (<10%) were significantly activated by both receptors in response to TCDD. Conversely of the 1100 and 779 genes significantly repressed in mAHRb and hAHR hepatocytes respectively, only 462 (<25%) genes were significantly repressed by both receptors in response to TCDD treatment. Genes identified as differentially expressed are known to be involved in a number of biological pathways, including cell proliferation and inflammatory response which suggests that compared to the mAHRb, the hAHR may play contrasting roles in TCDD-induced toxicity and endogenous AHR-mediated gene regulation.

Publication Title

Differential gene regulation by the human and mouse aryl hydrocarbon receptor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15037
Foxo1 target genes in mouse T cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD4+ and CD8+ T cells isolated from wild-type and Foxo1-deficient mice were analyzed by global gene expression profiling with Affymetrix array MOE 430 2.0. Results indicate Foxo1 regulates the expression of genes encoding positive regulators of T cell activation, differentiation, homeostasis, cell adhesion, cell migration, and cellular stress responses.

Publication Title

An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23167
Expression data from DC-induced Hopx-deficient and sufficient regulatory T cells after immunization
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We found that Hopx is required for the function of DC-induced regulatory T cells in vivo. We used microarrays to identify relevant Hopx-targets in such cells after antigenic re-challenge in vivo.

Publication Title

The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell-mediated peripheral T cell unresponsiveness.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP063044
Follicular Helper T Cells Progressively Differentiate to Regulate the Germinal Center Response
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: To compare the transcriptomes of IL-21-expressing, IL-21 and IL-4-expressing, and IL-4 expressing follicular helper T (Tfh) cells and Th2 cells in the spleen at 8 days following helminth infection Methods: Cell sorting of the populations was done for CD4+B220-CD44hiCXCR5hiPD-1hi cells of the various types, followed by mRNA purification. Overall design: CD4+Splenic T cell mRNA profiles 8 days post-infection of IL-21/IL-4 dual reporter mice with Nippostrongylus brasiliensis were generated by mRNA sequencing using Illumina HiSeq 2000.

Publication Title

TFH cells progressively differentiate to regulate the germinal center response.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE13147
Myd88, Trif, and Rip2-independent macrophage responses to Legionella pneumophila
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Microarray analysis of Myd88-/-Trif-/- and Myd88-/-Rip2-/- macrophage responses to WT or dotA mutant L. pneumophila.

Publication Title

Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13537
MEF2 Regulated Genes
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Expression profiling in hippocampal neurons to identify activity-regulated genes controlled by MEF2

Publication Title

Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13538
MEF2 Activated Genes
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Expression profiling in hippocampal neurons to identify genes upregulated in response to ectopic MEF2 activation by MEF2-VP16-ER

Publication Title

Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact