The subunits of voltage-gated calcium channels regulate surface expression and gating of CaV1 and CaV2 1 subunits, and thus contribute to neuronal excitability, neurotransmitter release and calcium-induced gene regulation. In addition certain subunits are targeted into the nucleus, where they directly interact with the epigenetic machinery. Whereas their involvement in this multitude of functions is reflected by a great molecular heterogeneity of isoforms derived from four genes and abundant alternative splicing, little is known about the roles of individual variants in specific neuronal functions. In the present study, an alternatively spliced 4 subunit lacking the variable N-terminus (4e) is identified. It is highly expressed in mouse cerebellum and cultured cerebellar granule cells (CGC) and modulates P/Q-type calcium currents in tsA cells and CaV2.1 surface expression in neurons. Compared to the other two known full-length 4 variants (4a, 4b) 4e is most abundantly expressed in the distal axon, but lacks nuclear targeting properties. To examine the importance of nuclear targeting of 4 subunits for transcriptional regulation, we performed whole genome expression profiling of CGCs from lethargic mice individually reconstituted with 4a, 4b, and 4e. Notably, the number of genes regulated by each 4 splice variant correlated with the rank order of their nuclear targeting properties (4b> 4a> 4e). Together these findings support isoform-specific functions of 4 splice variant in neurons, with 4b playing a dual role in channel modulation and gene regulation, while the newly detected 4e variant serves exclusively in calcium channel-dependent functions.
Differential neuronal targeting of a new and two known calcium channel β4 subunit splice variants correlates with their regulation of gene expression.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration.
Specimen part, Cell line
View SamplesMost cancer genomics papers to date have focused on aberrations in genomic DNA and protein-coding transcripts. However, around 50% of transcripts have no coding potential and may exist as non-coding RNA. We performed RNA-seq in BRAFv600e melanoma skin cancer and on melanocytes over-expressing oncogenic BRAF to catalog transcriptome remodeling. We discovered that BRAF regulates expression of 1027 protein coding transcripts, 39 annotated lncRNAs and 70 novel transcripts. Many of the novel transcripts are lncRNAs. We used an indepenedent dataset to interrogate our novel transcripts and found that the novel lncRNA BANCR is a BRAF-regulated lncRNA recurrently upregulated in melanoma. Knockdown of BANCR impairs melanoma cell migration.
BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition.
Specimen part, Cell line, Treatment
View SamplesThousands of enhancers are characterized in the human genome, yet few have been shown important in cancer. Inhibiting oncokinases, such as EGFR, ALK, HER2, and BRAF, is a mainstay of current cancer therapy but is hindered by innate drug resistance mediated by upregulation of the HGF receptor, MET. The mechanisms mediating such genomic responses to targeted therapy are unknown. Here, we identify lineage-specific MET enhancers for multiple common tumor types, including a melanoma lineage-specific MET enhancer that displays inducible chromatin looping and MET gene induction upon BRAF inhibition. Epigenomic analysis demonstrated that the melanocyte-specific transcription factor, MITF, mediates this enhancer function. Targeted genomic deletion (<7bp) of the MITF motif within the MET enhancer suppressed inducible chromatin looping and innate drug resistance, while maintaining MITF-dependent, inhibitor-induced melanoma cell differentiation. Epigenomic analysis can thus guide functional disruption of regulatory DNA to decouple pro- and anti-oncogenic functions of tumor lineage-enriched transcription factors mediating innate resistance to oncokinase therapy.
Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Suppression of progenitor differentiation requires the long noncoding RNA ANCR.
Specimen part, Disease, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Suppression of progenitor differentiation requires the long noncoding RNA ANCR.
Specimen part
View SamplesLong non-coding RNAs (lncRNAs) regulate diverse processes, yet a potential role for lncRNAs in maintaining the undifferentiated state in somatic tissue progenitor cells remains uncharacterized. We used transcriptome sequencing and tiling arrays to compare lncRNA expression in epidermal progenitor populations versus differentiating cells. We identified ANCR (anti differentiation ncRNA) as an 855 bp lncRNA down-regulated during differentiation. Depleting ANCR in progenitor-containing populations, without any other stimuli, led to rapid differentiation gene induction. In epidermis, ANCR loss abolished the normal exclusion of differentiation from the progenitor-containing compartment. The ANCR lncRNA is thus required to enforce the undifferentiated cell state within epidermis.
Suppression of progenitor differentiation requires the long noncoding RNA ANCR.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Control of somatic tissue differentiation by the long non-coding RNA TINCR.
Specimen part, Disease, Treatment
View SamplesSeveral of the thousands of human long non-coding RNAs (lncRNAs) have been functionally characterized; however, potential roles for lncRNAs in somatic tissue differentiation remain poorly understood. Here we show that a 3.7kb lncRNA, terminal differentiation-induced ncRNA (TINCR), controls human epidermal differentiation by a post-transcriptional mechanism. TINCR is required for high mRNA abundance of key differentiation genes, many of which are mutated in human skin diseases, including FLG, LOR, ALOXE3, ALOX12B, ABCA12, CASP14 and ELOVL3. TINCR-deficient epidermis lacked terminal differentiation ultrastructure, including keratohyalin granules and intact lamellar bodies. Genome-scale RNA interactome analysis revealed that TINCR interacts with a suite of differentiation mRNAs. TINCR-mRNA interaction occurs through a 25 nucleotide TINCR box motif which is strongly enriched in interacting mRNAs \and required for TINCR binding. A high-throughput screen to analyze TINCR binding capacity to ~9,400 human recombinant proteins revealed direct binding of TINCR RNA to the Staufen1 (STAU1) protein. STAU1-deficient tissue recapitulated the impaired differentiation seen with TINCR depletion. Loss of UPF1 and UPF2, both of which are required for STAU1-mediated RNA decay (SMD), however, lacked differentiation impacts. Instead, the TINCR/STAU1 complex seems to mediate stabilization of differentiation mRNAs, such as KRT80. These data identify TINCR as a key lncRNA required for somatic tissue differentiation, which occurs through inducible lncRNA binding to differentiation mRNAs to ensure their expression.
Control of somatic tissue differentiation by the long non-coding RNA TINCR.
Specimen part, Treatment
View Samples