refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 30 results
Sort by

Filters

Technology

Platform

accession-icon GSE14020
Metastases of breast cancer
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Comparisons among breast cancer metastases at different organs revealed distinct microenvironments as characterized by cytokine content.

Publication Title

Latent bone metastasis in breast cancer tied to Src-dependent survival signals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14018
Metastases of breast cancer (U133A)
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparisons among breast cancer metastases at different organs revealed distinct microenvironments as characterized by cytokine content.

Publication Title

Latent bone metastasis in breast cancer tied to Src-dependent survival signals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14017
Metastases of breast cancer (U133plus2)
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Comparisons among breast cancer metastases at different organs revealed distinct microenvironments as characterized by cytokine content.

Publication Title

Latent bone metastasis in breast cancer tied to Src-dependent survival signals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47389
Towards understanding breast cancer mechanisms to metastasize
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

How organ-specific metastatic traits accumulate in primary tumors remains unknown. We identified a role of the primary tumor stroma in selecting breast cancer cells that are primed for metastasis in the bone. A fibroblast-rich stroma in breast tumors creates a microenvironment that is similar to that of bone metastases in its abundance of the cytokines CXCL12 and IGF1. Heterogeneous breast cancer cell populations growing in such mesenchymal environment evolve towards a preponderance of clones that thrive on CXCL12 and IGF1. Fibroblast-driven selection of bone metastatic clones in mammary tumors is suppressed by CXCL12 and IGF1 receptor inhibition. Thus, a fibroblast-rich stroma in breast tumors can pre-select bone metastatic seeds, promoting the evolution of metastatic traits and the interplay between a primary tumor and its distant metastases.

Publication Title

Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP017788
Polysome-associated mRNA profiling of cancer cells in response to CXCL12 and IGF1
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

CXCL12 and IGF1 are key secreting molecules produced by cancer-associated fibroblasts in breast cancer. These factors promote the survival of disseminated cancer cells in the bone marrow. To assess the combined responses elicited by CXCL12 and IGF1, we examined the translating transcriptome of cancer cells in response to these two factors by Translating Ribosome Affinity Purification (TRAP)-RNAseq. Overall design: MDA-MB-231 cells were engineered to express an EGFP-tagged version of ribosomal protein L10a. This allows the retrieval of polysome-associated mRNA by anti-GFP pull down (TRAP) and profiling the translating transcriptome by RNAseq. EGFP-L10a+ cancer cells were serum starved (0.2% serum) for 24 hours, and then treated with CXCL12 (30ng/mL) + IGF1 (10ng/mL) or CXCL12 (300ng/mL) + IGF1 (100ng/mL) for 6hrs. Two biological replicates were profiled for each condition.

Publication Title

Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE12276
Expression data from primary breast tumors
  • organism-icon Homo sapiens
  • sample-icon 203 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Brain metastasis is one of the most feared complications of cancer and the most common intracranial malignancy in adults. Its underlying mechanisms remain unknown. From breast cancer patients with metastatic disease we isolated cell populations that aggressively colonize the brain. Transcriptomic analysis of these cells yielded overlapping gene sets whose expression is selectively associated with brain metastasis. The expression of seventeen of these genes in primary breast tumors is associated with brain relapse in breast cancer patients. Some of these genes are also associated with metastasis to lung but not to liver, bone or lymph nodes, providing a molecular basis for the long-observed link between brain and lung metastasis. Among the functionally validated brain metastasis genes, the cyclooxigenase COX-2, the EGFR ligand HB-EGF, and the brain-specific 2-6 sialyltransferase ST6GALNAC5 mediate cancer cell passage through the blood-brain barrier. Other brain metastasis genes encode inflammatory factors and brain-specific proteolytic regulators, suggesting a multifaceted program for breast cancer colonization of the brain.

Publication Title

Genes that mediate breast cancer metastasis to the brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12237
Genes that mediate breast cancer metastasis to the brain
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Brain metastasis is one of the most feared complications of cancer and the most common intracranial malignancy in adults. Its underlying mechanisms remain unknown.

Publication Title

Genes that mediate breast cancer metastasis to the brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2034
Breast cancer relapse free survival
  • organism-icon Homo sapiens
  • sample-icon 285 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This series represents 180 lymph-node negative relapse free patients and 106 lymph-node negate patients that developed a distant metastasis.

Publication Title

Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5327
Breast cancer relapse free survival and lung metastasis free survival
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Validation of lung metastasis signature (LMS) and its association with risk of developing lung metastasis and with primary tumor size.

Publication Title

Lung metastasis genes couple breast tumor size and metastatic spread.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE82173
Primary breast tumors
  • organism-icon Homo sapiens
  • sample-icon 146 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact