Whole transcriptome for SKI knock-out and control HL60 cells was sequenced. SKI control and knockout samples were compared to find differentially expressed genes. Differentially expressed genes were further analysed to find the significance of SKI in HL60 cells. Overall design: Examining of SKI dependent transcriptome in HL60 cells using RNAseq.
Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1.
Specimen part, Cell line, Subject
View SamplesBackground: Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of stage M patients present with disseminated tumor cells (DTCs) in the bone marrow (BM). Although these cells represent a major obstacle in the treatment of neuroblastoma patients, their transcriptomic profile was not intensively analyzed so far. Results: RNA-Seq of stage M primary tumors, enriched BM-derived DTCs and the corresponding non-tumor mononuclear cells (MNCs) revealed that DTCs largely retained the gene expression signature of tumors. However, we identified 322 genes that were differentially expressed (q < 0.001, |log2FC|>2). Particularly genes encoded by mitochondrial DNA were highly up-regulated in DTCs, whereas e.g. genes involved in angiogenesis were down-regulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q < 8x10-75 log2FC > 6). Interestingly, we found that the gene expression profiles of diagnostic DTCs largely resembled those of relapse DTCs with only 113 differentially expressed genes under relaxed cut-offs (q < 0.01, |log2FC| > 0.5). Notably, relapse DTCs showed a positional enrichment of 31 down-regulated genes encoded by chromosome 19, including five tumor suppressor genes (SIRT6, PUMA, STK11, CADM4 and GLTSCR2). Conclusion: This first RNA-Seq analysis of DTCs from neuroblastoma patients revealed their unique expression profile in comparison to the corresponding MNCs and tumor samples, and, interestingly, also expression differences between diagnostic and relapse DTCs preferentially affecting chromosome 19. As these alterations might be associated with treatment failure and disease relapse, they should be considered for further functional studies. Overall design: Tumor (n=16), bone marrow-derived disseminated tumor cells (n=42) and corresponding bone marrow-derived non-tumor cells (n=28) of stage M neuroblastoma patients were used for RNA-Seq
Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent tumor progression.
Specimen part, Subject
View SamplesTo identify transcriptionally regulated genes in primary mouse macrophages stimulated with LPS with high sensitivity, we isolated nascent RNA following metabolic labelling with 4-thiouridine during the last 35 min before cell harvest, as recently described (Dolken et al. 2008 RNA 14:1959-72). Microarray analyses of nascent RNA identified substantially more probe sets as up-regulated after 45 min of LPS stimulation than parallel analyses of total cellular RNA. In contrast, 4.5 h after stimulation, up-regulated genes in total and nascent RNA largely overlapped. This approach therefore allowed a much more sensitive detection of early changes in transcription, and the respective genes are likely to be direct targets of LPS-regulated transcription factors.
The phosphoproteome of toll-like receptor-activated macrophages.
Specimen part
View SamplesThe remarkable feature of Schwann cells (SCs) to transform into a repair phenotype turned the spotlight on this powerful cell type. SCs provide the regenerative environment for axonal re-growth after peripheral nerve injury (PNI) and play a vital role in differentiation of neuroblastic tumors into a benign subtype of neuroblastoma, a tumor originating from neural crest-derived neuroblasts. Hence, understanding their mode-of-action is of utmost interest for new approaches in regenerative medicine, but also for neuroblastoma therapy. However, literature on human SCs is scarce and it is unknown to which extent human SC cultures reflect the SC repair phenotype developing after PNI in patients. We performed high-resolution proteome profiling and RNA-sequencing on highly enriched human SC and fibroblast cultures, control and ex vivo degenerated nerve explants to identify novel molecules and functional processes active in repair SCs. In fact, we found cultured SCs and degenerated nerves to share a similar repair SC-associated expression signature, including the upregulation of JUN, as well as two prominent functions, i.e., myelin debris clearance and antigen presentation via MHCII. In addition to myelin degradation, cultured SCs were capable of actively taking up cell-extrinsic components in functional phagocytosis and co-cultivation assays. Moreover, in cultured SCs and degenerated nerve tissue MHCII was upregulated at the cellular level along with high expression of chemoattractants and co-inhibitory rather than -stimulatory molecules. These results demonstrate human SC cultures to execute an inherent program of nerve repair and support two novel repair SC functions, debris clearance via phagocytosis-related mechanisms and type II immune-regulation. Overall design: mRNA of 27 samples were sequenced (50bp, single end) and analyzed. Biological replicates were performed.
Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype.
Subject
View SamplesTranslation and mRNA degradation are intimately connected, yet the mechanisms that regulate them are not fully understood. Here we examine the regulation of translation and mRNA stability in mouse embryonic stem cells (ESCs) and during differentiation. In contrast to previous reports, we found that transcriptional changes account for most of the molecular changes during ESC differentiation. Within ESCs translation level and mRNA stability are positively correlated. The RNA-binding protein DDX6 has been implicated in processes involving both translational repression and mRNA destabilization; in yeast DDX6 connects codon optimality and mRNA stability and in mammals DDX6 is involved in microRNA-mediated repression. We generated DDX6 KO ESCs and found that while there was minimal connection between codon usage and stability changes, the loss of DDX6 leads to the translational depression of microRNA targets. Surprisingly, the translational derepression of microRNA targets occurs without affecting mRNA stability. Furthermore, DDX6 KO ESCs share overlapping phenotypes and global molecular changes with ESCs that completely lack all microRNAs. Together our results demonstrate that the loss of DDX6 decouples the two forms of microRNA induced repression and emphasize that translational repression by microRNAs is underappreciated. Overall design: 4-thiouridine (4su) metabolic labeling was performed on mouse embryonic stem cells (ESCs) and Epiblast like cells (EpiLCs).
Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells.
Specimen part, Disease, Subject
View SamplesMitochondria are able to modulate cell state and fate during normal and pathophysiologic conditions through a nuclear mediated mechanism collectively termed as a retrograde response. Our previous studies in Drosophila have clearly established that progress through the cell cycle is precisely regulated by the intrinsic activity of the mitochondrion by specific signaling cascades mounted by the cell. As a means to further our understanding of how mitochondrial energy status affects nuclear control of basic cell decisions we have employed Affymetrix microarray-based transcriptional profiling of Drosophila S2 cells knocked down for the gene encoding subunit Va of the complex IV of the mitochondrial electron transport chain. The profiling data identifies up-regulation of glycolytic genes and metabolic studies confirm this increase in glycolysis. The transcriptional portrait which emerges implicates many signaling systems, including a p53 response, an insulin response, and up-regulation of conserved mitochondrial responses. This rich dataset provides many novel targets for further understanding the mechanism whereby the mitochondrion may direct cellular fate decisions. The data also provides a salient model of the shift of metabolism from a predominately oxidative state towards a predominately aerobic glycolytic state, and therefore provides a model of energy substrate management not unlike that found in cancer.
Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia.
Specimen part
View SamplesThe aim of this study was to determine the role that miRNAs have on influencing murine microgial phenotypes under M1(LPS) and M2a (IL-4) stimulating conditions.
Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia.
Specimen part
View SamplesWe have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation. Lack of TRAMP activity stabilises ~1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC). Overall design: One sample each of Cbc2-associated RNA from wild-type and trf4-deleted cells at 6 hours of meiosis
The nuclear exosome is active and important during budding yeast meiosis.
Subject, Time
View SamplesTreatment of prostate cancer by hormone suppression leads to the appearance of aggressive variants with variable or no dependence on the androgen receptor. Here we show that the developmental transcription factor, ONECUT2, is a master regulator of the AR network that is highly active in castration-resistant prostate cancer (CRPC).
ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
Cell line, Treatment
View Samples