Steer liver transcriptome
Differential expression of genes related to gain and intake in the liver of beef cattle.
Sex, Specimen part
View SamplesBeef cow adipose tissue transcriptome
Differential transcript abundance in adipose tissue of mature beef cows during feed restriction and realimentation.
Specimen part
View SamplesSteer spleen transcriptome
Profile of the Spleen Transcriptome in Beef Steers with Variation in Gain and Feed Intake.
Specimen part
View SamplesSteer mesenteric fat transcriptome.
Relationships between the genes expressed in the mesenteric adipose tissue of beef cattle and feed intake and gain.
Specimen part
View SamplesSteer small intestine transcriptome
Differential gene expression in the duodenum, jejunum and ileum among crossbred beef steers with divergent gain and feed intake phenotypes.
Specimen part
View SamplesRNA sequencing (RNA-Seq) was performed on rumen papillae from 16 steers with variation in gain and feed intake. Overall design: Sixteen rumen papillae samples were sequenced by Cofactor Genomics (St.Louis, MO).
Transcriptome differences in the rumen of beef steers with variation in feed intake and gain.
Specimen part, Subject
View SamplesThe CUG-BP and ETR-3-like factor 1 (Celf1) RNA binding protein plays an important role in heart and muscle development, and is over-expressed in the disease myotonic dystrophy. Celf1 has known roles in regulation of RNA splicing, RNA stability, and protein translation. To identify transcriptome-wide targets of the Celf1 protein in heart, we performed RNA-Seq of polyA+ RNA from mice inducibly expressing Celf1 in the heart. Overall design: Mice were engineered to express the reverse tetracycline trans-activator (rtTA) from a heart-specific alpha myosin heavy chain promoter, and an N-terminal Flag-tagged version of the LYLQ isoform of human Celf1 from a tet-inducible promoter. Mice were fed doxycycline to induce Celf1 expression in heart, and hearts were harvested from 3 mice each at 12 hour, 24 hour, 72 hour, and 7 day time points. To account for potential doxycycline-dependent effects, control mice were fed doxycycline for 72 hours but these mice did not contain the tet-inducible Celf1 cassette. In total, 15 hearts were analyzed by RNA-Seq.
Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins.
No sample metadata fields
View SamplesThe CUG-BP and ETR-3-like factor 1 (Celf1) RNA binding protein plays an important role in heart and muscle development, and is over-expressed in the disease myotonic dystrophy. Celf1 has known roles in regulation of RNA splicing, RNA stability, and protein translation. To identify transcriptome-wide targets of the Celf1 protein in heart, we performed RNA-Seq of polyA+ RNA from mice inducibly expressing Celf1 in the muscle. Overall design: Mice were engineered to express the reverse tetracycline trans-activator (rtTA2S-M2) from the rate myosin light chain 1/3 promoter/enhancer, and an N-terminal Flag-tagged version of the LYLQ isoform of human Celf1 from a tet-inducible promoter. Mice were fed doxycycline to induce Celf1 expression in muscle, and gastrocnemius muscles were harvested from 3 mice each at 12 hour, 24 hour, 72 hour, and 7 day time points. To account for potential doxycycline-dependent effects, control mice were fed doxycycline for 72 hours but these mice did not contain the tet-inducible Celf1 cassette. In total, 15 gastrocnemius samples were analyzed by RNA-Seq.
Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins.
No sample metadata fields
View SamplesThe CUG-BP and ETR-3-like factor 1 (Celf1) RNA binding protein plays an important role in heart and muscle development, and is over-expressed in the disease myotonic dystrophy. Celf1 has known roles in regulation of RNA splicing, RNA stability, and protein translation. To identify transcriptome-wide targets of the Celf1 protein in heart, we performed RNA-Seq of polyA+ RNA from mice inducibly expressing Celf1 in the muscle. Overall design: Mice were engineered to express the reverse tetracycline trans-activator (rtTA2S-M2) from the rate myosin light chain 1/3 promoter/enhancer, and an N-terminal Flag-tagged version of the LYLQ isoform of human Celf1 from a tet-inducible promoter. Mice were fed doxycycline to induce Celf1 expression in muscle, and gastrocnemius muscles were harvested from 3 mice each at 12 hour, 24 hour, 72 hour, and 7 day time points. To account for potential doxycycline-dependent effects, control mice were fed doxycycline for 72 hours but these mice did not contain the tet-inducible Celf1 cassette. In total, 15 gastrocnemius samples were analyzed by RNA-Seq.
Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins.
No sample metadata fields
View SamplesTreatment of prostate cancer by hormone suppression leads to the appearance of aggressive variants with variable or no dependence on the androgen receptor. Here we show that the developmental transcription factor, ONECUT2, is a master regulator of the AR network that is highly active in castration-resistant prostate cancer (CRPC).
ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
Cell line, Treatment
View Samples