This SuperSeries is composed of the SubSeries listed below.
MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients.
Sex, Disease
View SamplesThe purpose of this study was to investigate the expression dynamics of mRNAs and microRNAs in response to subcutaneous IFN-beta-1b treatment (Betaferon, 250 g every other day) in patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS) or relapsing-remitting type of the disease (RRMS).
MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients.
Sex, Disease
View SamplesThe goal of this study was to compare expression profiles of B cells in the presence and absence of transcription factor MAX under normal and premalignant settings Overall design: Each genotype is represented in triplicate (cells isolated from 3 individual mice for each)
<i>Max</i> deletion destabilizes MYC protein and abrogates Eµ-<i>Myc</i> lymphomagenesis.
Specimen part, Subject
View SamplesTranscriptome analysis of control and MALAT1 lncRNA-depleted RNA samples from human diploid lung fibroblasts [WI38]
Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB.
Specimen part, Cell line
View SamplesTranslation and mRNA degradation are intimately connected, yet the mechanisms that regulate them are not fully understood. Here we examine the regulation of translation and mRNA stability in mouse embryonic stem cells (ESCs) and during differentiation. In contrast to previous reports, we found that transcriptional changes account for most of the molecular changes during ESC differentiation. Within ESCs translation level and mRNA stability are positively correlated. The RNA-binding protein DDX6 has been implicated in processes involving both translational repression and mRNA destabilization; in yeast DDX6 connects codon optimality and mRNA stability and in mammals DDX6 is involved in microRNA-mediated repression. We generated DDX6 KO ESCs and found that while there was minimal connection between codon usage and stability changes, the loss of DDX6 leads to the translational depression of microRNA targets. Surprisingly, the translational derepression of microRNA targets occurs without affecting mRNA stability. Furthermore, DDX6 KO ESCs share overlapping phenotypes and global molecular changes with ESCs that completely lack all microRNAs. Together our results demonstrate that the loss of DDX6 decouples the two forms of microRNA induced repression and emphasize that translational repression by microRNAs is underappreciated. Overall design: 4-thiouridine (4su) metabolic labeling was performed on mouse embryonic stem cells (ESCs) and Epiblast like cells (EpiLCs).
Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells.
Specimen part, Disease, Subject
View SamplesThe role of chronic hepatitis C virus (HCV) in the pathogenesis of HCV-associated hepatocellular carcinoma (HCC) is not completely understood, particularly at the molecular level.
Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma.
Specimen part
View SamplesGene expression analysis showed that LncPHx2 depletion resulted in upregulation of mRNAs encoding proteins known to promote cell proliferation, including MCM components, DNA polymerases, histone proteins, and transcription factors Overall design: RNA-seq analysis was performed on livers of mice subjected to PHx or to sham surgery after treatment with LncPHx2_ASO1 or with PBS. Gene expression profiling was done at 48 hours post-surgery
Partial Hepatectomy Induced Long Noncoding RNA Inhibits Hepatocyte Proliferation during Liver Regeneration.
No sample metadata fields
View SamplesMitochondria are able to modulate cell state and fate during normal and pathophysiologic conditions through a nuclear mediated mechanism collectively termed as a retrograde response. Our previous studies in Drosophila have clearly established that progress through the cell cycle is precisely regulated by the intrinsic activity of the mitochondrion by specific signaling cascades mounted by the cell. As a means to further our understanding of how mitochondrial energy status affects nuclear control of basic cell decisions we have employed Affymetrix microarray-based transcriptional profiling of Drosophila S2 cells knocked down for the gene encoding subunit Va of the complex IV of the mitochondrial electron transport chain. The profiling data identifies up-regulation of glycolytic genes and metabolic studies confirm this increase in glycolysis. The transcriptional portrait which emerges implicates many signaling systems, including a p53 response, an insulin response, and up-regulation of conserved mitochondrial responses. This rich dataset provides many novel targets for further understanding the mechanism whereby the mitochondrion may direct cellular fate decisions. The data also provides a salient model of the shift of metabolism from a predominately oxidative state towards a predominately aerobic glycolytic state, and therefore provides a model of energy substrate management not unlike that found in cancer.
Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia.
Specimen part
View SamplesThe aim of this study was to determine the role that miRNAs have on influencing murine microgial phenotypes under M1(LPS) and M2a (IL-4) stimulating conditions.
Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia.
Specimen part
View Samples