refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 428 results
Sort by

Filters

Technology

Platform

accession-icon SRP039397
High-resolution mapping reveals a conserved, widespread, dynamic meiotically regulated mRNA methylation program [Hs]
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaMiSeq

Description

N6-methyladenosine (m6A) is a common modification of mRNA, with potential roles in fine-tuning the RNA life cycle, but little is known about the pathways regulating this process and its physiological role. Here, we used mass-spectrometry to identify a dense network of proteins physically interacting with METTL3, a core component of the methyltransferase complex, and show that two of them, WTAP and KIAA1429, are required for methylation. Combining high resolution m6A-Seq with knockdown of WTAP allowed us to define accurate maps, at near single-nucleotide resolution, of sites of mRNA methylation across four dynamic programs in human and mouse, including development, differentiation, reprogramming and immune response. Internal WTAP-dependent methylation sites were largely static across the different surveyed conditions and present in the majority of mRNAs. However, methylations were found at much lower levels within highly expressed mRNAs, and methylation is inversely correlated with mRNA stability, consistent with a role in establishing an overall basal, cell-type invariant, distribution of degradation rates. In addition, we identify thousands of WTAP-independent methylation sites at transcription initiation sites, forming part of the mRNA cap structure. We show that the methylations occur at the first transcribed nucleotide, and find that thousands of transcripts are present in different isoforms differing in the methylation state of the first transcribed nucleotide, a previously unappreciated complexity of the transcriptome. Together, our data sheds new light on the proteomic and transcriptional underpinnings of this epitranscriptomic modification in mammals. Overall design: Examination of m6A methylation in human Hek293 and A549 cell lines, in human embryonic stem cells (ESCs) undergoing differentiation to neural progenitor cells (NPCs), in OKMS inducible fibroblasts reprogrammed into iPSC, and upon knockdown of factors using siRNAs or shRNAs.

Publication Title

Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP039402
High-resolution mapping reveals a conserved, widespread, dynamic meiotically regulated mRNA methylation program [Mm]
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Description

N6-methyladenosine (m6A) is a common modification of mRNA, with potential roles in fine-tuning the RNA life cycle, but little is known about the pathways regulating this process and its physiological role. Here, we used mass-spectrometry to identify a dense network of proteins physically interacting with METTL3, a core component of the methyltransferase complex, and show that two of them, WTAP and KIAA1429, are required for methylation. Combining high resolution m6A-Seq with knockdown of WTAP allowed us to define accurate maps, at near single-nucleotide resolution, of sites of mRNA methylation across four dynamic programs in human and mouse, including development, differentiation, reprogramming and immune response. Internal WTAP-dependent methylation sites were largely static across the different surveyed conditions and present in the majority of mRNAs. However, methylations were found at much lower levels within highly expressed mRNAs, and methylation is inversely correlated with mRNA stability, consistent with a role in establishing an overall basal, cell-type invariant, distribution of degradation rates. In addition, we identify thousands of WTAP-independent methylation sites at transcription initiation sites, forming part of the mRNA cap structure. We show that the methylations occur at the first transcribed nucleotide, and find that thousands of transcripts are present in different isoforms differing in the methylation state of the first transcribed nucleotide, a previously unappreciated complexity of the transcriptome. Together, our data sheds new light on the proteomic and transcriptional underpinnings of this epitranscriptomic modification in mammals. Overall design: Examination of m6A methylation across different knockdowns using shRNAs in mouse embryonic fibroblasts, in embyronic and adult brains, and in dendritic cell stimulated with LPS.

Publication Title

Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP092637
Genome-wide gene-expression profile of mouse intestinal stem cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The goal of this project is to generate transcriptome profiling of intestinal stem cells for a systemic analysis of cellular pathways involved in responses to fasting. Overall design: Examination of one cell type in two conditions.

Publication Title

Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE46293
Expression data of multiple sclerosis patients receiving Interferon-beta therapy
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), TaqMan(r) Array Human MicroRNA A Cards v2.0

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE46280
Expression data of multiple sclerosis patients receiving Interferon-beta therapy [HG-U133_Plus_2]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to investigate the expression dynamics of mRNAs and microRNAs in response to subcutaneous IFN-beta-1b treatment (Betaferon, 250 g every other day) in patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS) or relapsing-remitting type of the disease (RRMS).

Publication Title

MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon SRP137731
DDX6 decouples translational repression from RNA degradation of miRNA targets [ESC EpiLC 4sU]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Translation and mRNA degradation are intimately connected, yet the mechanisms that regulate them are not fully understood. Here we examine the regulation of translation and mRNA stability in mouse embryonic stem cells (ESCs) and during differentiation. In contrast to previous reports, we found that transcriptional changes account for most of the molecular changes during ESC differentiation. Within ESCs translation level and mRNA stability are positively correlated. The RNA-binding protein DDX6 has been implicated in processes involving both translational repression and mRNA destabilization; in yeast DDX6 connects codon optimality and mRNA stability and in mammals DDX6 is involved in microRNA-mediated repression. We generated DDX6 KO ESCs and found that while there was minimal connection between codon usage and stability changes, the loss of DDX6 leads to the translational depression of microRNA targets. Surprisingly, the translational derepression of microRNA targets occurs without affecting mRNA stability. Furthermore, DDX6 KO ESCs share overlapping phenotypes and global molecular changes with ESCs that completely lack all microRNAs. Together our results demonstrate that the loss of DDX6 decouples the two forms of microRNA induced repression and emphasize that translational repression by microRNAs is underappreciated. Overall design: 4-thiouridine (4su) metabolic labeling was performed on mouse embryonic stem cells (ESCs) and Epiblast like cells (EpiLCs).

Publication Title

Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE14323
RMA expression data for liver samples from subjects with HCV, HCV-HCC, or normal liver
  • organism-icon Homo sapiens
  • sample-icon 122 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The role of chronic hepatitis C virus (HCV) in the pathogenesis of HCV-associated hepatocellular carcinoma (HCC) is not completely understood, particularly at the molecular level.

Publication Title

Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32912
Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Mitochondria are able to modulate cell state and fate during normal and pathophysiologic conditions through a nuclear mediated mechanism collectively termed as a retrograde response. Our previous studies in Drosophila have clearly established that progress through the cell cycle is precisely regulated by the intrinsic activity of the mitochondrion by specific signaling cascades mounted by the cell. As a means to further our understanding of how mitochondrial energy status affects nuclear control of basic cell decisions we have employed Affymetrix microarray-based transcriptional profiling of Drosophila S2 cells knocked down for the gene encoding subunit Va of the complex IV of the mitochondrial electron transport chain. The profiling data identifies up-regulation of glycolytic genes and metabolic studies confirm this increase in glycolysis. The transcriptional portrait which emerges implicates many signaling systems, including a p53 response, an insulin response, and up-regulation of conserved mitochondrial responses. This rich dataset provides many novel targets for further understanding the mechanism whereby the mitochondrion may direct cellular fate decisions. The data also provides a salient model of the shift of metabolism from a predominately oxidative state towards a predominately aerobic glycolytic state, and therefore provides a model of energy substrate management not unlike that found in cancer.

Publication Title

Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE49331
Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49329
Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia (mRNA)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study was to determine the role that miRNAs have on influencing murine microgial phenotypes under M1(LPS) and M2a (IL-4) stimulating conditions.

Publication Title

Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact