refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 245 results
Sort by

Filters

Technology

Platform

accession-icon SRP132366
Sequencing of freshly produced RNA following exposure of cells to DNA damage-inducing UV mimetic 4-hydroxyaminoquinolone (4-NQO)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We used Illumina-HiSeq4000 to sequence 4sU-labelled RNA samples isolated from unchallenged and DNA damaged HeLa Flp-In cells, which revealed the nature of transcriptional response folowing genotoxic stress and the contribution of P-TEFb kinase in DNA damage-induced gene transcription. Overall design: We mock treated or treated HeLa Flp-In cells for 1 or 2 hr with DMSO, 4-NQO, or 4-NQO + flavopiridol (FP) as indicated below. During the last 30 minutes of the treatments, we labeled the RNA or not with the nucleoside analogue 4-thiouridine (500µM 4sU) for 30 minutes.

Publication Title

P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE145367
GeneChip Expression Array
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis to compare control cells and sorted cells

Publication Title

Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52686
Expression data from mDCT cell-line over-expressing hMR
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Target gene of mineralocorticoid receptor (MR) is comparatively unknown, although distal convoluted tubule (DCT) expresses MR in in vivo.

Publication Title

Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE56246
Dectin-1-mediated signaling leads to characteristic gene expressions in rat mast cells
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Rat mast cell line RBL-2H3 was analyzed to investigate the molecular mechanism of Dectin-1-mediated activation and responses of mast cells.

Publication Title

Dectin-1-mediated signaling leads to characteristic gene expressions and cytokine secretion via spleen tyrosine kinase (Syk) in rat mast cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE49336
Gene expression in Fut8+/+ and Fut8-/- MEFs
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Effect of Fut8 deletion in MEF

Publication Title

The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE50687
Expression data from testes of the mouse X-chromosome substitution strains
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To investigate the evolutionary divergence of transcriptional regulation between the mouse subspecies, we performed transcriptome analysis by microarray on testes from the X-chromosome substitution strain, which carries different subspecies-derived X chromosome on the host subspecies genome. Transcription profiling showed that large-scale aberrations in gene expression were occurred on the introgressed X chromosome. This improper expression was restored by introducing chromosome 1 from the same donor strain as the X chromosome, suggesting that the genetic incompatibility between trans-acting regulatory gene(s) on chromosome 1 and X-linked downstream genes might be a cause of the misregulation.

Publication Title

Evolutionarily diverged regulation of X-chromosomal genes as a primal event in mouse reproductive isolation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16341
A simple optimization can improve the performance of single feature polymorphism detection by Affymetrix expression array: Transcript and Genome Hybridizations
  • organism-icon Oryza sativa indica group
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

The publicly available genome sequence information of two rice strains, japonica cultivar Nipponbare and indica cultivar 93-11, opens a great opportunity for investigation of performances DNA genotyping by high-density oligonucleotide arrays. Here, we compare single feature polymorphism (SFP) detection performances between whole genome hybridization and transcript hybridization using Affymetrix Rice Expression Array and the two rice cultivars.

Publication Title

A simple optimization can improve the performance of single feature polymorphism detection by Affymetrix expression arrays.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP057452
Nucleotide stress induction of HEXIM1 suppresses melanoma by modulating cancer cell-specific gene transcription [RNA-Seq1]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Cancer metabolism has been actively studied to gain insights into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a novel melanoma suppressor that participates in nucleotide stress regulation. HEXIM1 expression is low in melanoma. Its overexpression suppresses melanoma while its inactivation accelerates tumor onset in vivo. HEXIM1 responds to nucleotide stress. Knockdown of HEXIM1 rescues neural crest and melanoma nucleotide stress phenotypes in vivo. Mechanistically, under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to pause transcription at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic transcripts to bind to and be stabilized by HEXIM1. HEXIM1 therefore plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals a novel role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma. Overall design: RNA-seq analysis of human A375 melanoma cells treated with either DMSO or 25 µM A771726 for 0-72 hrs.

Publication Title

Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057453
Nucleotide stress induction of HEXIM1 suppresses melanoma by modulating cancer cell-specific gene transcription [RNA-Seq2]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Cancer metabolism has been actively studied to gain insights into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a novel melanoma suppressor that participates in nucleotide stress regulation. HEXIM1 expression is low in melanoma. Its overexpression suppresses melanoma while its inactivation accelerates tumor onset in vivo. HEXIM1 responds to nucleotide stress. Knockdown of HEXIM1 rescues neural crest and melanoma nucleotide stress phenotypes in vivo. Mechanistically, under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to pause transcription at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic transcripts to bind to and be stabilized by HEXIM1. HEXIM1 therefore plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals a novel role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma. Overall design: RNA-seq analysis of human Tet-On HEXIM1-inducible A375 melanoma cells treated with either DMSO or 1 µg/mL doxycycline in triplicate for 48 hrs.

Publication Title

Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12198
Primary NKcells vs. NKAES-derived NK cells vs. NKcells stimulated by low/high dose IL2 after 7days of culture
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional profiling of NKAES-derived NK cells after 7 days of culture compared to primary human NK cells and NK cells stimulated by low or high dose IL2 after 7 days of culture.

Publication Title

Expansion of highly cytotoxic human natural killer cells for cancer cell therapy.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact