refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 169 results
Sort by

Filters

Technology

Platform

accession-icon GSE54312
HDG1 transcription factor targets
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

The AIL transcription factor BABY BOOM (BBM) is required together with the related PLETHORA proteins for embryo and root meristem development and its expression is sufficient to confer pluripotency and totipotency to somatic tissues. We show that BBM and other AIL proteins interact with multiple members of the L1/epidermal-expressed HD-ZIP class IV / HOMEODOMAIN GLABROUS (HDG) transcription factor family. Ectopic overexpression of HDG1, HDG11 and HDG12 genes induces a reduced growth phenotype, and analysis of HDG1 overexpression lines shows that this growth reduction is due to both root and shoot meristem arrest. To understand how HDG1 controls cell proliferation, as well as its functional relationship with BBM, we performed microarray experiments to identify candidate genes that are directly regulated by HDG1, and compared these to the set of genes that are directly regulated by BBM expression.

Publication Title

AIL and HDG proteins act antagonistically to control cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE29370
Gene expression profile of malignant mesothelioma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Malignant mesothelioma (MM) is an asbestos-related malignancy and largely unresponsive to conventional chemotherapy or radiotherapy. Novel, more effective therapeutic strategies are needed for this fatal disease. We performed microarray analysis of MM using Affymetrix Human U133 Plus 2.0 array. Aberrant expression of the genes participating in semaphorin signaling were detected in malignant mesothelioma cells. All MM cells downregulated the expression of more than one gene for SEMA3B, 3F, and 3G when compared with Met5a, a normal pleura-derived cell line. In 12 of 14 epithelioid MM cells, the expression level of SEMA3A was lower than that in Met5a. An augmented expression of VEGFA was detected in half of the MM cells. The expression ratio of VEGFA/SEMA3A was significantly higher in the epithelioid MMs than in Met5a and the non-epithelioid MMs. Next, gene expression profiling for the polycomb and trithorax group genes revealed that expression of BAP1, the catalytic subunit of the polycomb repressive deubiquitinase complex, and many trithorax group genes was downregulated in MMs compared with the expression of the same genes in Met5a cells. Perturbation of the polycombtrithorax balance plays a significant role in the pathogenesis of malignant mesothelioma.

Publication Title

Frequent deletion of 3p21.1 region carrying semaphorin 3G and aberrant expression of the genes participating in semaphorin signaling in the epithelioid type of malignant mesothelioma cells.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon SRP115226
Transcriptome sequencing of 15 normal lung parenchyma (NL), 17 atypical adenomatous hyperplasia (AAH) and 16 lung adenocarcinoma (LUAD) samples from 17 patients
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We sought to characterize expression profiles signifying the development of atypical adenomatous hyperplasia (AAH) from normal lung parenchyma (NL), and its progression to lung adenocarcinomas (LUAD). Overall design: We performed transcriptome sequencing of 48 samples, comprising NLs, AAHs and LUADs, from 17 patients. Sequencing was performed using the Ion Torrent platform afterwhich gene profiles differentially expressed among the three groups were determined.

Publication Title

Genomic Landscape of Atypical Adenomatous Hyperplasia Reveals Divergent Modes to Lung Adenocarcinoma.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE10072
Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival
  • organism-icon Homo sapiens
  • sample-icon 107 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Tobacco smoking is responsible for over 90% of lung cancer cases, and yet the precise molecular alterations induced by smoking in lung that develop into cancer and impact survival have remained obscure. We performed gene expression analysis using HG-U133A Affymetrix chips on 135 fresh frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former and never smokers, with biochemically validated smoking information. ANOVA analysis adjusted for potential confounders, multiple testing procedure, Gene Set Enrichment Analysis, and GO-functional classification were conducted for gene selection. Results were confirmed in independent adenocarcinoma and non-tumor tissues from two studies. We identified a gene expression signature characteristic of smoking that includes cell cycle genes, particularly those involved in the mitotic spindle formation (e.g., NEK2, TTK, PRC1). Expression of these genes strongly differentiated both smokers from non-smokers in lung tumors and early stage tumor tissue from non-tumor tissue (p<0.001 and fold-change>1.5, for each comparison), consistent with an important role for this pathway in lung carcinogenesis induced by smoking. These changes persisted many years after smoking cessation. NEK2 (p<0.001) and TTK (p=0.002) expression in the noninvolved lung tissue was also associated with a 3-fold increased risk of mortality from lung adenocarcinoma in smokers. Our work provides insight into the smoking-related mechanisms of lung neoplasia, and shows that the very mitotic genes known to be involved in cancer development are induced by smoking and affect survival. These genes are candidate targets for chemoprevention and treatment of lung cancer in smokers.

Publication Title

Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE41127
Gene expression profile in the spleen of mice fed Lactobacillus brevis KB290
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lactic acid bacteria confer a variety of health benefits. Here we investigate the mechanisms by which Lactobacillus brevis KB290 enhances cell-mediated cytotoxic activity. We fed a diet containing KB290 (3 10^9 colony-forming units/g) , or potato starch, to 9-week-old female BALB/c mice for 1, 4, 7, or 14 days and examined the cytotoxic activity of splenocytes was measured. RNA was extracted from the spleen and analyzed for gene expression by DNA microarray.

Publication Title

Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE58004
Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Persistent colonization of the gastric mucosa by Helicobacter pylori (Hp) elicits chronic inflammation and aberrant epithelial cell proliferation, which increases the risk of gastric cancer. We examined the ability of microRNAs to modulate gastric cell proliferation in response to persistent Hp infection and found that epigenetic silencing of miR-210 plays a key role in gastric disease progression. Importantly, DNA methylation of the miR-210 gene was increased in Hp-positive human gastric biopsies as compared to Hp-negative controls. Moreover silencing of miR-210 in gastric epithelial cells promoted proliferation. We identified STMN1 and DIMT1 as miR-210 target genes and demonstrated that inhibition of miR-210 expression augmented cell proliferation by activating STMN1 and DIMT1. Together, our results highlight inflammation-induced epigenetic silencing of miR-210 as a mechanism of induction of chronic gastric diseases, including cancer, during Hp infection.

Publication Title

Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE77994
Affymetrix HG-U133 Plus 2 array data of iPSCs and iPSC-derived-NSPCs
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

iPSC-derived NSPCs, which were induced by two different protocols (Embryoid body or Neural rosette) followed by expansion in free-floating culture (neurospheres), had closely resembled profiles.

Publication Title

Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE69762
Gene expression of human small intestine generated by biopsy specimens
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The entire small intestine was obseved by balloon endoscopy. Biopsy specimens were taken from jejunum, ileum and colon, respectively.

Publication Title

Reduced Human α-defensin 6 in Noninflamed Jejunal Tissue of Patients with Crohn's Disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE110199
Comparison between WT and bes1 in an in vitro tissue culture system, VISUAL
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

We have previously established an in vitro tissue culture system (named VISUAL; Kondo et al., 2016), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons

Publication Title

BES1 and BZR1 Redundantly Promote Phloem and Xylem Differentiation.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE20586
Expression data from Arabidopsis suspension cells overexpressing VND6 and SND1
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Xylem consists of three types of cells: vessel cells, also referred to as tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanism of their gene regulation. Here, we show that VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master regulator of TEs, regulates these processes in a coordinated manner. We first identified specific genes downstream of VND6 by comparing them with those of SECONDARY WALL-ASSOCIATES NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, with transformed suspension culture cells in microarray experiments.

Publication Title

Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation.

Sample Metadata Fields

Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact