To investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program.
Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range.
Specimen part
View SamplesAcute renal allograft rejection is an important complication in kidney transplantation. Accurate diagnosis of rejection events is necessary for timely response and treatment. We illustrate the usefulness and biological relevance of selected multivariate approaches to detect rejection from genomic and proteomic signals. The data was used to study gene expression changes using whole genome microarray analysis of peripheral blood from subjects with acute rejection (n=20) and non-rejecting controls (n=20) to obtain insight into the molecular and biological causation of acute renal allograft rejection when combined with proteomics (iTRAQ) data for the same patients/time-points.
Novel multivariate methods for integration of genomics and proteomics data: applications in a kidney transplant rejection study.
Sex, Specimen part, Race
View SamplesResistance formation is one of the major hurdles in cancer therapy. Metronomic anti-angiogenic treatment of xenografted prostate cancer tumors in SCID mice with cyclophosphamide (CPA) results in the appearance of resistant tumors. To investigate the complex molecular changes occurring during resistance formation, we performed a comprehensive gene expression analysis of the resistant tumors in vivo. We observed a multitude of differentially expressed genes, e.g., PASD1, ANXA3, NTS or PLAT, when comparing resistant to in vivo passaged tumor samples. Furthermore, tumor cells from in vivo and in vitro conditions showed a significant difference in target gene expression. We assigned the differentially expressed genes to functional pathways like axon guidance, steroid biosynthesis and complement and coagulation cascades. Most of the genes were involved in anti-coagulation, indicating its possible importance. Upregulation of anti-coagulatory ANXA3 and PLAT and downregulation of PLAT inhibitor SERPINA were validated by qPCR. In contrast, coagulation factor F3 was upregulated, accompanied by the expression of an altered gene product. These findings give insights into the resistance mechanisms of metronomical CPA treatment suggesting an important role of anti-coagulation in resistance formation.
A Comprehensive Gene Expression Analysis of Resistance Formation upon Metronomic Cyclophosphamide Therapy.
Specimen part, Cell line, Treatment
View SamplesBackground: Udder infections with environmental pathogens like Escherichia coli are a serious problem for the diary industry. Reduction of incidence and severity of mastitis is desirable and mild priming of the immune system either through vaccination or with low doses of an immune stimulant like lipopolysaccharide LPS was previously found to dampen detrimental effects of a subsequent infection. Monocytes / macrophages are known to develop tolerance to the endotoxin (ET) LPS as adaptation strategy to prevent exuberant inflammation. We have recently observed that application of 1 g of LPS/udder quarter effectively protects the cow for several days from an experimentally elicited mastitis. We have modelled this process in primary cultures of Mammary Epithelial Cells (MEC) from the cow. This is by far the most abundant cell type in the udder coming into contact with invading pathogens and little is known about the role of MEC in establishing ET in the udder.
Lipopolysaccharide priming enhances expression of effectors of immune defence while decreasing expression of pro-inflammatory cytokines in mammary epithelia cells from cows.
Specimen part, Time
View SamplesUsually starch is nearly depleted at the end of the night. To induce a gradual depletion of carbon, we have analysed the global response of transcripts during an extension of the night, where carbon becomes severely limiting from about four hours onwards.
Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes.
Specimen part
View SamplesEmerging biomarkers based on medical images and molecular characterization of tumor biopsies open up for combining the two disciplines and exploiting their synergy in treatment planning. We compared pretreatment classification of cervical cancer patients by two previously validated imaging- and gene-based hypoxia biomarkers, evaluated the influence of intratumor heterogeneity, and investigated the benefit of combining them in prediction of treatment failure. The imaging-based biomarker was hypoxic fraction, determined from diagnostic dynamic contrast enhanced (DCE)-MR images. The gene-based biomarker was a hypoxia gene expression signature determined from tumor biopsies. Paired data were available for 118 patients. Intratumor heterogeneity was assessed by variance analysis of MR images and multiple biopsies from the same tumor. The two biomarkers were combined using a dimension-reduction procedure. The biomarkers classified 75% of the tumors with the same hypoxia status. Both intratumor heterogeneity and distribution pattern of hypoxia from imaging were unrelated to inconsistent classification by the two biomarkers, and the hypoxia status of the slice covering the biopsy region was representative of the whole tumor. Hypoxia by genes was independent on tumor cell fraction and showed minor heterogeneity across multiple biopsies in 9 tumors. This suggested that the two biomarkers could contain complementary biological information. Combination of the biomarkers into a composite score led to improved prediction of treatment failure (HR:7.3) compared to imaging (HR:3.8) and genes (HR:3.0) and prognostic impact in multivariate analysis with clinical variables. In conclusion, combining imaging- and gene-based biomarkers enables more precise and informative assessment of hypoxia-related treatment resistance in cervical cancer, independent of intratumor heterogeneity.
Combining imaging- and gene-based hypoxia biomarkers in cervical cancer improves prediction of chemoradiotherapy failure independent of intratumour heterogeneity.
Specimen part
View SamplesRenal failure is characterized by important biological changes resulting in profound pleomorphic physiological effects termed uremia, whose molecular causation is not well understood. The data was used to study gene expression changes in uremia using whole genome microarray analysis of peripheral blood from subjects with end-stage renal failure (n=63) and healthy controls (n=20) to obtain insight into the molecular and biological causation of this syndrome.
Alteration of human blood cell transcriptome in uremia.
Sex, Specimen part, Disease, Disease stage, Race
View SamplesInfections of the udder by Escherichia coli very often elicit acute inflammation, while Staphylococcus aureus infections tend to cause mild, subclinical inflammation and persistent infections. The molecular causes undercovering the different disease patterns are poorly understood. We therefore profiled kinetics and extent of global changes in the transcriptome of primary bovine mammary epithelia cells (MEC) subsequent to challenging them with heat inactivated preparations of E. coli or S. aureus pathogens. E. coli swiftly and strongly induced expression of cytokines and bactericidal factors. S. aureus elicited a retarded response and failed to quickly induce expression of bactericidal factors. Both pathogens induced a similar pattern of chemokines for cell recruitment into the udder, but E. coli stimulated their synthesis much faster and stronger. The genes which are exclusively and most strongly up-regulated by E. coli may be clustered into a regulatory network with Tumor necrosis factor alpha (TNF-a) and Interleukin 1 (IL-1) in a central position. In contrast, the expression of these master cytokines is barely regulated by S. aureus. Both pathogens quickly trigger enhanced expression of IL-6. This is still possible after completely abrogating MyD88 dependent TLR-signalling in MEC. The E. coli specific strong induction of TNF-a and IL-1 expression may be causative for the severe inflammatory symptoms of animals suffering from E. coli mastitis while avoidance to quickly induce synthesis of bactericidal factors may support persistent survival of S. aureus within the udder. We suggest that S. aureus subverts MyD88-dependent activation of immune gene expression in MEC.
Comparative kinetics of Escherichia coli- and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha.
Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences.
Specimen part, Cell line
View SamplesThe heterogeneous collection of NuRD complexes can be grouped into the MBD2 or MBD3 containing complexes MBD2-NuRD and MBD3-NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking. Here we show when depleting cells for MBD2, the MBD2 bound genes increase their activity, whereas MBD2 plus MBD3 bound genes reduce their activity. Most strikingly, MBD3 is enriched at active promoters, whereas MBD2 is bound at methylated promoters and enriched at exon sequences of active genes. This suggests a functional connection between MBD2 binding to chromatin and splicing.
Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences.
Cell line
View Samples