refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 42 results
Sort by

Filters

Technology

Platform

accession-icon GSE27087
Mouse embryonic and induced pluripotent stem cells can form definitive endoderm despite differences in imprinted genes
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The directed differentiation of induced pluripotent stem (iPS) and embryonic stem (ES) cells into definitive endoderm (DE) would allow the derivation of otherwise inaccessible progenitors for endodermal tissues. However, a global comparison of the relative equivalency of DE derived from iPS and ES populations has not been performed. Recent reports of molecular differences between iPS and ES cells have raised uncertainty as to whether iPS cells could generate autologous endodermal lineages in vitro. Here, we have shown that both mouse iPS and parental ES cells exhibited highly similar in vitro capacity to undergo directed differentiation into DE progenitors. With few exceptions, both cell types displayed similar surges in gene expression of specific master transcriptional regulators and global transcriptomes that define the developmental milestones of DE differentiation. Microarray analysis showed considerable overlap between the genetic programs of DE derived from ES/iPS cells in vitro and authentic DE from mouse embryos in vivo. Intriguingly, iPS cells exhibited aberrant silencing of imprinted genes known to participate in endoderm differentiation, yet retained a robust ability to differentiate into DE. Our results show that, despite some molecular differences, iPS cells can be efficiently differentiated into DE precursors, reinforcing their potential for development of cell-based therapies for diseased endodermal-derived tissues.

Publication Title

Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35461
Expression profile of human ESC, ESC-drived definitive endoderm and endodermal progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Endodermal progenitor cells (EP cells) are derived from human embryonic stem cell(ESC)-derived definitive endoderm (DE) cells. EP cells are cultured in high BMP media and DE cells are in high Activin media. Both cells can be further differentiated to liver, pancreas, etc.

Publication Title

Self-renewing endodermal progenitor lines generated from human pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61933
Pluripotent stem cells reveal novel erythroid activities of the GATA1 N-terminus
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE36787
Transcriptome profiling of trisomy 21 and euploid iPSC-derived hematopoietic progenitors expressing wtGATA1 or an amino-truncated isoform of GATA1, GATA1short (GATA1s).
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We generated human induced pluripotent stem cells (iPSCs) from trisomy 21 (T21) and euploid patient tissues with and without GATA1 mutations causing exclusive expression of truncated GATA1, termed GATA1short (GATA1s). Transcriptome analysis comparing expression levels of genes in GATA1s vs. wtGATA1-expressing progenitors demonstrated that GATA1s impairs erythropoiesis and enhances megakaryopoiesis and myelopoiesis in both T21 and euploid contexts in the iPSC-model system.

Publication Title

Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35561
Expression data from trisomy 21 and euploid induced pluripotent stem cell hematopoietic progenitors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We modeled human Trisomy 21 primitive hematopoiesis using induced pluripotent stem cells (iPSCs). Primitive multipotent progenitor populations generated from Trisomy 21 iPSCs showed normal proliferative capacity and megakaryocyte production, enhanced erythropoiesis and reduced myeloid development compared to euploid iPSCs.

Publication Title

Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62879
Transcriptome profiling of mouse Gata1- megakaryocyte-erythroid progenitors (G1MEs) expressing one of the two isoforms of GATA1: full-length (GATA1fl) or an amino-truncated form of GATA1 (GATA1s).
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We transduced mouse Gata1- megakaryocyte-erythroid progenitors with MIGRI-GFP vector expressing GATA1fl or GATA1s cDNAs. GFP-positive cells expressing one of the two isoforms of GATA1 were isolated by FACS 42 hours following transduction and used for microarray transcriptome analysis. At this time point, there was no apparent difference in the cell surface phenotypes between GATA1fl and GATA1s-expressing cells. Transcriptome data for G1ME/GATA1fl at 42h were deposited previously under GSE14980 (GSM374049, GSM374050, GSM374051), whereas G1ME/GATA1s at 42h are deposited here.

Publication Title

Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49231
Clonal Genetic and Hematopoietic Heterogeneity among Human Induced Pluripotent Stem Cell lines
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Induced pluripotent stem cells hold great promise for modeling human hematopoietic diseases. However, intrinsic variability in the capacities of different iPSC lines for hematopoietic development complicates comparative studies and is currently unexplained.

Publication Title

Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66078
Emergence of a developmental stage-dependent human liver disease signature demonstrated by directed differentiation of alpha-1 antitrypsin deficient iPS cells
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE66076
Emergence of a developmental stage-dependent human liver disease signature demonstrated by directed differentiation of alpha-1 antitrypsin deficient iPS cells [HuGene-1_0-st]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We monitored 9 pluripotent stem cell lines across three time points of hepatic directed differentiation, representing 3 developmental stages: undifferentiated (T0), definitive endoderm (T5), and early hepatocyte (T24). ESCs (n=3) and patient-derived normal (n=3) or PiZZ (n=3) iPSCs were analyzed in the undifferentiated state (T0), after differentiation to definitive endoderm (T5), and upon reaching hepatic stage (T24) for a total of 27 samples. We sought to test the hypothesis that a single transgene-free iPSC clone from each donor could be used to detect disease-specific differences between the normal cohort and the PiZZ cohort, anticipating that this difference would emerge only at a developmental stage in which the mutant AAT gene is expressed. Cells were sorted before analysis at T0 and T5 after antibody staining for TRA1-80+/SSEA3+ (T0) or C-kit+/CXCR4+ (T5) cells.

Publication Title

Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP049713
Identification and functional characterization of long noncoding RNAs in breast cancer
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

In this study, we have integrated RNA-seq data from subcellular fractionated RNA (i.e., cytoplasm, nucleoplasm, and chromatin-associated) with GRO-seq data using a novel bioinformatics pipeline. This has yielded a comprehensive catalog of polyadenylated lncRNAs in MCF-7 cells, about half of which have not been annotated previously and about a quarter of which are estrogen-regulated. Knockdown of selected lncRNAs, such as lncRNA152 and lncRNA67 followed by RNA-seq suggest that these lncRNAs regulate the expression of cell cycle genes. Overall design: characterization of long noncoding RNAs

Publication Title

Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact