refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 414 results
Sort by

Filters

Technology

Platform

accession-icon GSE61651
The cellular origin and malignant transformation of Waldenstrm's Macroglobulinemia
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The cellular origin and malignant transformation of Waldenström macroglobulinemia.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE61597
The cellular origin and malignant transformation of Waldenstrm's Macroglobulinemia [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Although information on the molecular pathogenesis of Waldenstrms Macroglobulinemia (WM) has greatly improved in recent years, the exact cellular origin and the mechanisms behind WM transformation from IgM MGUS remain undetermined. Here, we undertook an integrative phenotypic, molecular and genomic approach to study clonal B-cells from newly-diagnosed patients with IgM MGUS (n=22), smoldering (n=17), and symptomatic WM (n=10). Through principal-component-analysis of multidimensional flow cytometry data, we demonstrated overlapping phenotypic profiles between clonal B-cells from IgM MGUS, smoldering and symptomatic WM patients. Similarly, virtually no genes were significantly deregulated between FACS-sorted clonal B-cells from the three disease stages. Interestingly, while the transcriptome of the Waldenstrms clone was highly deregulated as compared to CD25-CD22+ normal B-cells, significantly less genes were differentially expressed and specific WM pathways down-regulated while comparing the transcriptome of the Waldenstrms clone vs. its normal phenotypic counterpart: CD25+CD22+dim B-cells. The frequency of specific copy number abnormalities [+4, del(6q23.3-6q25.3), +12, and +18q11-18q23] progressively increased from IgM MGUS and smoldering WM vs. symptomatic WM (18% vs. 20% and 73%, respectively; P =.008), suggesting a multistep transformation of clonal B-cells that albeit benign (i.e.: IgM MGUS and smoldering WM), already harbor the phenotypic and molecular signatures of the malignant Waldenstrms clone.

Publication Title

The cellular origin and malignant transformation of Waldenström macroglobulinemia.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE151027
Gene expression changes in human cord blood-derived hematopoietic stem and progenitor cells upon Centrifugation enhanced Nanostraw Transfection or Conventional Electroporation
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

CD34+ human cord blood-derived cells were subjected to GFP mRNA delivery or mock treatment using Centrifugation enhanced Nanostraw Transfection (CeNT) or conventional electroporation.

Publication Title

Efficient and nontoxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP061689
EHMT1 and EHMT2 inhibition induce fetal hemoglobin expression [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Using UNC0638 and genetic assays to inhibit EHMT1/2 and derepress fetal hemoglobin in adult hematopoietic cells. Overall design: RNA-Seq in primary adult human erythroid cells treated with UNC0638 or the vehicle control (DMSO) in biological triplicates.

Publication Title

EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP119759
RIG-I-Like-Receptors Induce Unique and Complimentary Transcriptional Programs Following West Nile Virus Infection Leading to Macrophage Polarization and Protection
  • organism-icon Mus musculus
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The study shows that RLRs drive distinct immune gene activation and polarization of the immune response. In our data, the RLR-dependent, WNV-induced immune response polarization overshadows the classical drivers of viral innate immune responses, interferon I (IFN) and IFN-stimulated genes, thus underscoring the importance of innate immune activation for channeling the adaptive immune system into specific effector pathways Overall design: We conducted genome-wide RNAseq and bioinformatics analysis of WNV infection in bone marrow derived macrophages from the RLR-deficient mice.

Publication Title

RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE60352
Analyses of iHC transcriptome profiles
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. However, very little is known about the transcriptional regulators involved in HC fate determination and differentiation. In this paper, we show that expression of three HC lineage-specific transcription factors: Gfi1, Pou4f3 and Atoh1, can induce a direct commitment towards HC fate during in vitro embryonic stem cell (ESC) differentiation. Induced HCs (iHCs) express numerous HC-specific genes and exhibit polarized membrane protusions reminiscent of stereociliary bundles.

Publication Title

Generation of sensory hair cells by genetic programming with a combination of transcription factors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE79417
Expression data of Brain CD45+ cells from WT and STI knockout mice after WNV infection
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

West Nile virus (WNV) is the most important cause of endemic encephalitis in the USA. Strikingly, only a small percentage of patients develop clinical disease and of these patients, approximately 1 out of 150 patients develops encephalitis. The basis for this great variability in disease outcome is unknown, but may be related to the innate immune response. Innate immune responses, critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors (PRR) such as RIG-I and MDA5. IPS-1 is a key adaptor in generating a PRR-dependent interferon response.. Here we show that IPS-1 deficiency in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In IPS-1-/- mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were multifunctional and were able to lyse peptide-pulsed target cells in vitro. However, virus-specific T cells in the infected IPS-1-/- brain exhibited lower functional avidity than those in C57BL/6 brains, possibly contributing to less efficient virus clearance. The presence of virus-specific memory T cells was also not protective. We also show that macrophages were increased in numbers in the IPS-1-/- brain. Both macrophages and microglia exhibited an activated phenotype. Microarray analyses showed the preferential upregulation of genes associated with leukocyte activation and inflammation. Together, these results demonstrate the critical role that hematopoietic cell expression of Type 1 interferon and other IPS-1-dependent molecules have in WNV clearance and in regulating the inflammatory response.

Publication Title

MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP045805
Jarid2 regulates hematopoietic stem cell function by acting with Polycomb Repressive Complex 2
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaHiSeq2000

Description

Polycomb Repressive Complex 2 (PRC2) has been shown to play a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use shRNA-mediated knockdown to survey the function of known PRC2 accessory factors in HSPCs by testing the competitive reconstitution capacity of transduced murine fetal liver cells. We find that similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult, mouse and human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function. Overall design: RNA-seq of jarid knockdown, suz knockdown and control from HSPC in 16 week old mice.

Publication Title

Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18027
BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

RNAi mediated knockdown of BTG1 in the acute lymphoblastic cell line RS4;11 causes this cell line to become resistant to prednisolone treatment when compared to control cells.

Publication Title

BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE30377
Human Hematopoietic and Leukemic Stem Cell Gene Expression Profiles
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix HT Human Genome U133A Array (hthgu133a), Affymetrix Human Genome U133B Array (hgu133b)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stem cell gene expression programs influence clinical outcome in human leukemia.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact