T follicular helper CD4 T cells (Tfh) provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike blood, we consistently identified a CXCR5-Bright PD-1-Bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh, and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue. Overall design: Transcriptional features of germinal center Tfh were detected in a population of Tfh in the efferent lymph of the human thoracic duct and can be traced to an activated subset of circulating Tfh in blood.
T follicular helper cells in human efferent lymph retain lymphoid characteristics.
Specimen part, Subject
View SamplesBackground: Acute myeloid leukemia (AML) is driven by somatic mutations and genomic rearrangements affecting >20 genes. Many of these are recent discoveries and how this molecular heterogeneity dictates AML pathophysiology and clinical outcome remains unclear. Methods: We sequenced 111 leukemia genes for driver mutations in 1540 AML patients with cytogenetic and clinical data. We modeled AMLs genomic structure, defining genetic interactions, patterns of temporal evolution and clinical correlations. Results: We identified 5,236 driver mutations involving 77 loci, including hotspot mutations in MYC. We found 1 driver mutation in 96% patients, and 2 in 85%. Gene mutations implicated in age related clonal hematopoiesis (DNMT3A, ASXL1, TET2) were the earliest in AML evolution, followed by highly specific and ordered patterns of co-mutation in chromatin, transcription and splicing regulators, NPM1 and signaling genes. The patterns of co-mutation compartmentalize AML into 12 discrete molecular classes, each presenting with distinct clinical manifestation. Amongst these, mutations in chromatin and spliceosome genes demarcate a molecularly heterogeneous subgroup enriched for older AML patients currently classified as intermediate risk and results in adverse prognosis. Two- and three-way genetic interactions often implicating rare genes/mutation-hotspots, markedly redefined clinical response and long-term curability, with the NPM1:DNMT3A:FLT3ITD genotype (6% patients) identifying poor prognosis disease, whereas within the same class NPM1:DNMT3A:NRASG12/13 (3%) associated with favorable outlooks. Conclusions: 79% of AML is molecularly classified in 12 genomic subgroups. These represent distinct molecular phylogenies, implicating complex genotypes. Delineation of higher-order genomic relationships, guide the development of personally tailored classification, prognostication and clinical protocols. Similar studies across cancer types are warranted.
Genomic Classification and Prognosis in Acute Myeloid Leukemia.
Specimen part, Disease
View SamplesTo identify isoform differential expression underlying peripheral nerve regeneration we performed RNA-Sequencing on DRG neurons after axotomy. Overall design: RNA was sequenced from peripheral Dorsal Root Ganglia (DRG) neurons from adult male mice 7 days after a conditioning lesion at the level of the sciatic nerve (Crushed samples) or after a sham surgery (Controls surgery).
Identification of miRNAs involved in DRG neurite outgrowth and their putative targets.
No sample metadata fields
View SamplesGoblet cell metaplasia and mucus hypersecretion are disabling hallmarks of chronic lung diseases for which no curative treatments are available. Therapies targeting specific upstream drivers of asthma have had variable results. We hypothesized that an a priori-knowledge independent approach would point to new therapies for airway goblet cell metaplasia. We analyzed the transcriptome of an organotypic model of human goblet cell metaplasia. We combined our data with previously published datasets from IL13-exposed in vitro and asthmatic in vivo human airway epithelial cells. The drug perturbation-response connectivity approach identified the heat shock protein 90 (HSP90) inhibitor geldanamycin as a candidate for reverting airway goblet cell metaplasia. We found that geldanamycin not only prevented but reverted IL13-induced goblet cell metaplasia. Geldanamycin did not induce goblet cell death, did not solely block mucin synthesis, and did not block IL13 receptor-proximal signaling. Moreover, the transcriptional effects of geldanamycin were absent in unstimulated cells and became evident only after stimulation with IL13. The predicted mechanism of action suggested that geldanamycin should also revert IL17-induced goblet cell metaplasia, a prediction confirmed by our data. Our findings suggest HSP90 activity may be required for persistence of goblet cell metaplasia driven by various mechanisms in chronic lung diseases. Overall design: For both batches, airway epithelia cultures from the lungs of eight different humans were studied, therefore, there are eight biological replicates. Comparisons should be made within batches. In batch 1 (XAM1), epithelia were exposed to vehicle (DMSO 0.5%), geldanamycin 25 uM, or the HDAC6 inhibitor ISOX 10 uM for 48 hours. In batch 2 (XAM3), the epithelia were exposed to vehicle (DMSO 0.5%), IL13 (20 ng/mL) or IL13 plus geldanamycin (10 uM) for 48 hours.
HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia.
Specimen part, Treatment, Subject
View SamplesThis study aimed to investigate the molecular effects of non-ablative Er:YAG laser treatment using an in vitro model of the non-keratinized mucous membrane and to compare its molecular effects with other ablative and non-ablative laser systems. In dermatology, the use of non-ablative and ablative fractional lasers has become the gold standard treatment for a number of indications. Each of the individual laser types is advantageous for different types of indications due to its respective properties, but new technologies open up new fields of application for individual laser systems. Performing a comprehensive gene expression profiling we compared the gene regulatory effects of non-ablative Er:YAG laser with other non-ablative and ablative laser systems. In vitro 3D models have proven to be a reliable and reproducible tool to study the molecular biological effects of different laser settings.
Deciphering the molecular effects of non-ablative Er:YAG laser treatment in an in vitro model of the non-keratinized mucous membrane.
Specimen part, Treatment
View SamplesNS1 proteins from avian influenza viruses like the 1918 pandemic NS1 are capable of inhibiting the key signaling integrator c-Abl (Abl1), resulting in massive cytopathic cell alterations. In the current study, we addressed the consequences of NS1-mediated alteration of c-Abl on acute lung injury and pathogenicity. Comparing isogenic strains that differ only in their ability to inhibit c-Abl, we observed elevated pathogenicity for the c-Abl-inhibiting virus. NS1-mediated block of c-Abl resulted in severe lung pathology and massive edema formation and facilitated secondary bacterial pneumonia. This phenotype was independent of differences in replication and immune responses, defining it as an NS1 virulence mechanism distinct from its canonical functions. Microarray analysis revealed extensive down-regulation of genes involved in cell integrity and vascular endothelial regulation. In conclusion, NS1 protein-mediated blockade of c-Abl signaling drives acute lung injury and primes for bacterial co-infections revealing potential insights into the pathogenicity of the 1918 pandemic virus.
Nonstructural protein 1 (NS1)-mediated inhibition of c-Abl results in acute lung injury and priming for bacterial co-infections: insights into 1918 H1N1 pandemic?
Specimen part, Time
View SamplesGraft-versus-host disease (GvHD) is still one of the major complications following allogeneic stem cell transplantation (SCT) triggered by alloreactive donor T cells. Whereas murine data have clearly shown the beneficial effects of regulatory T cells (Tregs) on the development of GvHD, data from the human system are rare mainly due to low cell numbers of circulating or organ-infiltrating Tregs in lymphopenic patients. Here, we present a comparative analysis of Tregs from patients with and without acute/ chronic GvHD designed as a dynamical approach studying the whole genome profile over the first 6 months after SCT. For this purpose, blood samples were collected monthly for FACS-based isolation of CD4+CD25highCD127low/- Tregs. The Treg transcriptome showed a high stability in the first half year representing the most sensitive time window for tolerance induction. However, the comparison of the Treg transcriptome from patients with and without GvHD uncovered regulated gene transcripts that point to a reduced suppressive function of Tregs with diminished migration capacity to the target organs likely contributing to the development of GvHD. These findings highlight the critical role of human Tregs in the pathophysiology of GvHD and identify novel targets for the manipulation of Tregs to optimize cellular immune intervention strategies.
Human regulatory T cells in allogeneic stem cell transplantation.
Specimen part, Disease, Disease stage, Time
View SamplesThe goal of the experiment was to determine the transcriptional expression profile of zebrafish thrombocytes in order to enable comparison with mouse and human platelets. Overall design: Thrombocyte isolation from Tg(cd41:EGFP) zebrafish peripheral blood was performed using a novel monoclonal antibody (3H9) to Cd41
Sorting zebrafish thrombocyte lineage cells with a Cd41 monoclonal antibody enriches hematopoietic stem cell activity.
No sample metadata fields
View SamplesAlthough Hematopoietic Stem Cell Transplantation (HSCT) routinely treats hematologic disease, many patients experience adverse outcomes. Understanding the molecular regulation of HSC engraftment is paramount to improving HSCT regimens. Here, we executed a large-scale transplant-based functional screen for novel regulators of HSC repopulation.. Of >50 gene candidates tested, 18 were required for in vivo hematopoietic repopulation and two were detrimental to repopulation, as their loss enhanced this activity. Each Hit was validated in a second screen. Eleven Hits have never before been implicated in HSC biology. We further show that one novel Hit, Foxa3, is required for optimal engraftment as Foxa3-/- bone marrow is defective in both primary and secondary hematopoietic reconstitution. We also present evidence that Foxa3 is a novel pioneer factor in HSC. Each gene identified in our screen is a window into the cellular mechanisms that control hematopoietic reconstitution. Thus, this work represents a resource to the community to better understand these processes
Functional screen identifies regulators of murine hematopoietic stem cell repopulation.
Specimen part
View SamplesGuillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy that debilitates the voluntary and autonomous response of the patient. In this study the transcriptome of peripheral blood mononuclear cells from a GBS patient and her healthy twin were compared to discover possible correlates of disease progression and recovery. Overall design: Blood samples were collected simultaneously from the Guillain-Barré patient (A) and from her control healthy twin (B) at three different time points during disease progression from hospitalization in the intensive care unit (T1), passing to intermediate care (T2), and at conclusion of locomotion rehabilitation program when the patient was close to abandon the hospital (T3).
Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain-Barré Syndrome.
No sample metadata fields
View Samples