BCAS2 (Breast cancer amplified sequence 2) is involved in multiple biological processes, including pre-mRNA splicing. However, the physiological roles of BCAS2 are still largely unclear. Here we report that BCAS2 is specifically enriched in spermatogonia of mouse testes. Conditional disruption of Bcas2 in male germ cells impairs spermatogenesis and leads to male mouse infertility. Although the spermatogonia appear grossly normal, spermatocytes in meiosis prophase I and meiosis events (recombination and synapsis) are rarely observed in the BCAS2-depleted testis. In BCAS2 null testis, 245 genes are altered in alternative splicing forms; at least three spermatogenesis-related genes (Dazl, Ehmt2 and Hmga1) can be verified. In addition, disruption of Bcas2 results in a significant decrease of the full-length form and an increase of the short form (lacking exon 8) of DAZL protein. Altogether, our results suggest that BCAS2 regulates alternative splicing in spermatogonia and the transition to meiosis initiation, and male fertility. Overall design: Transcriptional profiles of P9 testes from Control and Bcas2F/-;V-cre males
BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis.
Specimen part, Cell line, Subject
View SamplesThe objective of this study was to examine the effect of the presence of a single or multiple embryo(s) on the transcriptome of the bovine oviduct. In Experiment 1, cyclic (non-bred, n = 6) and pregnant (artificially inseminated, n = 11) heifers were slaughtered on Day 3 after estrus, and the ampulla and isthmic regions of the oviduct ipsilateral to the corpus luteum were separately flushed. Oviductal epithelial cells from the isthmus region, in which all oocytes/embryos were located, were snap-frozen for microarray analysis. In Experiment 2, heifers were divided into cyclic (non-bred, n = 6) or pregnant (multiple embryo transfer, n = 10) groups. In vitro-produced presumptive zygotes were transferred endoscopically to the ipsilateral oviduct on Day 1.5 post estrus (n = 50 zygotes per heifer). Heifers were slaughtered on Day 3 and oviductal isthmus epithelial cells were recovered for RNA sequencing. Microarray analysis in Experiment 1 failed to detect any difference in the transcriptome of the oviductal isthmus induced by the presence of a single embryo. In Experiment 2, following multiple embryo transfer, RNA sequencing revealed 278 differentially expressed genes of which 123 were up- and 155 were down-regulated in pregnant heifers. Most of the down-regulated genes were related to immune function. Overall design: Transcriptional profiles of oviductal isthmus epithelial cells from cyclic and pregnant heifers were generated by sequencing of total RNA on the Illumina HiSeq 2500 platform
Oviduct-Embryo Interactions in Cattle: Two-Way Traffic or a One-Way Street?
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Oviduct-Embryo Interactions in Cattle: Two-Way Traffic or a One-Way Street?
Specimen part, Treatment
View SamplesThe development of breast cancer resistance to endocrine therapy results from an increase in cellular plasticity leading to the development of a steroid independent tumour. The p160 steroid coactivator protein SRC-1, through interactions with developmental proteins and other non-steroidal transcription factors drives this tumour adaptability. Here, using discovery studies we identify ADAM22, a non-protease member of the ADAMs family, as a direct target of SRC-1, independent of estrogen receptor(ER). Molecular, cellular, in vivo and clinical studies confirmed SRC-1 as a regulator of ADAM22 and established a role for ADAM22 in endocrine resistant tumour progression. ADAM22 has the potential to act as a therapeutic drug target and a companion predictive biomarker in the treatment of endocrine resistant breast cancer.
Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine-resistant breast cancer.
Cell line, Treatment
View SamplesThe objective of this study was to examine the effect of the presence of a single or multiple embryo(s) on the transcriptome of the bovine oviduct. In Experiment 1, cyclic (non-bred, n = 6) and pregnant (artificially inseminated, n = 11) heifers were slaughtered on Day 3 after estrus, and the ampulla and isthmic regions of the oviduct ipsilateral to the corpus luteum were separately flushed. Oviductal epithelial cells from the isthmus region, in which all oocytes/embryos were located, were snap-frozen for microarray analysis. In Experiment 2, heifers were divided into cyclic (non-bred, n = 6) or pregnant (multiple embryo transfer, n = 10) groups. In vitro-produced presumptive zygotes were transferred endoscopically to the ipsilateral oviduct on Day 1.5 post estrus (n = 50 zygotes per heifer). Heifers were slaughtered on Day 3 and oviductal isthmus epithelial cells were recovered for RNA sequencing. Microarray analysis in Experiment 1 failed to detect any difference in the transcriptome of the oviductal isthmus induced by the presence of a single embryo. In Experiment 2, following multiple embryo transfer, RNA sequencing revealed 278 differentially expressed genes of which 123 were up- and 155 were down-regulated in pregnant heifers. Most of the down-regulated genes were related to immune function.
Oviduct-Embryo Interactions in Cattle: Two-Way Traffic or a One-Way Street?
Specimen part
View SamplesTGFbeta is the major cytokine driver of fibrosis in the kidney and other tissue. Epithelial-mesenchymal transition has been postulated to contibrute to renal fibrosis in diseases such as diabetic nephropathy.
Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy.
Cell line, Time
View SamplesWe profiled primary breast cancer, nodal and liver metastatic tumours from three patients. At the time of initial diagnosis, all three patients presented with luminal breast cancer with adjacent nodal metastasis. They all received 5 years of enodrine therapy and all subsequently developed liver metastasis. Overall design: Examination of mRNA differences between primary, nodal and metastatic tumour samples.
Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy.
No sample metadata fields
View SamplesTGF-beta1 is the major cytokine driver of fibrotic scarring observed in diabetic nephropathy and other fibrosis-related diseases. RNA-sequencing offers the potential for more sensitive assessment of the TGF-ß1-driven transcriptome. Overall design: There were two treatment groups: vehicle, 48 hr TGFb1. Each treatment was carried out in triplicate. Upon quality control assessment, one TGFß1 treated sample was excluded from further analyses, leaving 3 unstimulated and 2 TGFß1 samples.
Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy.
No sample metadata fields
View SamplesDifferentiated cell can be reprogrammed into totipotent embryo through somatic cell nuclear transfer (SCNT). However, this process is highly inefficient and most cloned embryos arrest at certain developmental stages. Through single cell sequencing combined with embryo biopsy, here we generate a global map of DNA methylome and RNA transcriptome for SCNT embryos with distinct developmental fates. We subsequently demonstrate that the unfaithful reactivation of two histone demethylases, Kdm4b and Kdm5b, accounts for the arrest of cloned embryos at 2-cell and 4-cell stage, respectively. Ectopic expression of Kdm4b and Kdm5b in SCNT can remove H3K9me3 barrier, restore the transcription profile and facilitate the blastocyst developmental efficiency over 95%. Moreover, these cloned embryos can further support full-term development and the derivation of SCNT-embryonic stem cells with greater efficiency. Our study reveals that histone methylation reset is crucial for the development of SCNT embryos, which provides a clue to further improve therapeutic cloning. Overall design: For SCNT embryos or injected SCNT embryos 3-8 replicates were performed for each stage . As the control, 3-6 replicates were performed for each stage of wild type samples
Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing.
No sample metadata fields
View SamplesAcute lung injury (ALI) refers to a clinical syndrome characterized by bilateral lung injury, severe lung diffuse failure and hypoxemia caused by non-cardiogenic pulmonary edema.Sepsis is the leading etiology of ALI and a common admission to the intensive care unit, which induces pulmonary inflammation leading disruption of endothelial-epithelial barriers by surge release of pro-inflammatory cytokines that increases the permeability of the alveolar-capillary membrane, pulmonary infiltration, and edema.Ultimately, gas exchange across the alveolar-capillary membrane is severely impaired and acute respiratory failure and hypoxia occur. ALI patients may suffer from pulmonary inflammation and hypoxia simultaneously or sequentially, those two pathophysiological processes may interact mutually and contribute together to the development of ALI.
Hypoxia Exacerbates Inflammatory Acute Lung Injury <i>via</i> the Toll-Like Receptor 4 Signaling Pathway.
Specimen part
View Samples