In Arabidopsis, an individually darkened leaf (IDL) initiates senescence much quicker than a leaf from an entirely darkened plant (DP).
Darkened Leaves Use Different Metabolic Strategies for Senescence and Survival.
Specimen part
View SamplesTumor necrosis factor-associated factors 2 and 3 (TRAF2 and TRAF3) were shown to function in a co-operative and non-redundant manner to suppress nuclear factor-B2 (NF-B2) activation, gene expression and survival in mature B cells. In the absence of this suppressive activity, B cells developed independently of the obligatory B cell survival factor, BAFF (B cell activating factor of the tumor necrosis factor family). This constitutive, lineage-specific suppression of B cell survival by TRAF2 and TRAF3 determines the requirement for BAFF to sustain B cell development in vivo. We wished to investigate the effect on gene expression in B cells which lacked the negative regulators TRAF2 and TRAF3, and hence had hyperactive NF-kB2 signalling. As Baff-tg mice display a similar phenotype, and have a genetic modification which acts in the same pathway, yet further up, than TRAF2 and TRAF3, we wished to compare and contrast Baff-tg B cells with TRAF2 and TRAF3 deficient B cells. This analysis should identify genes that are important in B cell survival.
TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor.
Sex, Age
View SamplesBACKGROUND: Understanding individual patient host response to viruses is key to designing optimal personalized therapy. Unsurprisingly, in-vivo human experimentation to understand individualized dynamic response of the transcriptome to viruses are rarely studied because of the obvious limitations stemming from ethical considerations of the clinical risk.
Towards a PBMC "virogram assay" for precision medicine: Concordance between ex vivo and in vivo viral infection transcriptomes.
Specimen part, Subject
View SamplesDetailed analysis of disease-affected tissue provides insight into molecular mechanisms contributing to pathogenesis. Substantia nigra, striatum and cortex are functionally connected with increasing degrees
Systems-based analyses of brain regions functionally impacted in Parkinson's disease reveals underlying causal mechanisms.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesHigh fat feeding is deleterious for skeletal muscle metabolism, while exercise has well documented beneficial effects for these same metabolic features. To identify the genomic mechanisms by which exercise ameliorates some of the deleterious effects of high fat feeding, we investigated the transcriptional and epigenetic response of human skeletal muscle to 9 days of a high-fat diet (HFD) alone (Sed-HFD) or in combination with resistance exercise (Ex-HFD), using genome-wide profiling of gene expression (by RNA-seq) and DNA methylation (by Reduced Representation Bisulfite Sequencing). HFD markedly induced expression of immune and inflammatory genes which was not attenuated by Ex. In contract, Ex markedly remodelled expression of genes associated with muscle growth and structure. We detected marked DNA methylation changes following HFD alone and in combination with Ex. Among the genes that showed significant association between DNA methylation changes and gene expression were glycogen phosphorylase, muscle associated (PYGM), which was epigenetically regulated in both groups, and angiopoiten like 4 (ANGPTL4), which was regulated only following Ex. We conclude that Short-term Ex does not prevent HFD-induced inflammatory response, but provokes a genomic response that may preserve skeletal muscle from atrophy. Epigenetic adaptation provides important mechanistic insight into the gene specific regulation of inflammatory and metabolic processes in human skeletal muscle. Overall design: Sedentary or exercising human subjects undergo high-fat diet intervention.
Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans.
Specimen part, Subject, Time
View SamplesLow-dose epirubicin at non-cytotoxic doses down regulated NLRP3 inflammasome components and reduced the release of proinflammatory cytokines.
Transcriptional Suppression of the NLRP3 Inflammasome and Cytokine Release in Primary Macrophages by Low-Dose Anthracyclines.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mapping gene regulatory circuitry of Pax6 during neurogenesis.
Specimen part
View SamplesPax6 is a highly conserved transcription factor among vertebrates and is important in various aspects of the central nervous system (CNS) development. However, the gene regulatory circuitry of Pax6 underlying these functions remains elusive. We find that, following expression in neural progenitor cells, Pax6 targets many promoters embedded in an active chromatin environment. Intriguingly, many of these sites are also bound by another progenitor factor, Sox2, which cooperates with Pax6 in gene regulation. A combinatorial analysis of Pax6 binding dataset with transcriptome changes in Pax6-deficient neural progenitors reveals a dual role for Pax6, in which it activates the neuronal (ectodermal) genes while concurrently represses the mesodermal and endodermal genes thereby ensuring the unidirectionality of lineage commitment towards glutamatergic neuronal differentiation. Furthermore, Pax6 is critical for inducing activity of transcription factors that elicit neurogenesis and repress others that promote non-neuronal lineages. In addition to many established downstream effectors, Pax6 directly binds and activates a number of genes that are specifically expressed in neural progenitors but have not been previously implicated in neurogenesis. The in utero knockdown of one such gene, Ift74, during brain development impairs polarity and migration of new-born neurons. These findings demonstrate new aspects of the gene regulatory circuitry of Pax6, revealing how it functions to control neuronal development at multiple levels to ensure unidirectionality and proper execution of the neurogenic program.
Mapping gene regulatory circuitry of Pax6 during neurogenesis.
Specimen part
View SamplesRapid nerve conduction in the CNS is facilitated by the insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics is not well understood. Hypothesizing that only a fraction of all myelin-related mRNAs has been identified so far, we subjected myelin biochemically purified from mouse brains at various ages to RNA sequencing. We find a surprisingly large pool of transcripts abundant and/or enriched in myelin. Furthermore, a comprehensive analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting that the incorporation of mRNAs into the myelin compartment is highly selective. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months of age were minor. We suggest that this transcript pool provides a basis for the local modulation of myelin turnover and adaptation, i.e. in the individual internode. Overall design: A light-weight membrane fraction enriched for myelin was purified from mouse brains as described previously (Jahn et al., Neuromethods, 2013). For RNA-Seq, RNA was isolated from myelin of mice from indicated ages.
The transcriptome of mouse central nervous system myelin.
Specimen part, Subject
View SamplesHuman umbilical cord Whartons jelly stem cells (WHJSC) are gaining attention as a possible clinical source of mesenchymal stem cells for use in cell therapy and tissue engineering due to their high accessibility, expansion potential and plasticity. However, the cell viability changes that are associated to sequential cell passage of these cells are not known. In this analysis, we have identified the gene expression changes that are associated to cell passage in WHJSC.
Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy.
Specimen part
View Samples