Three groups of male +b and bb rats were obtained (ages between 6 and 14 months) and intestinal scrapes were taken. Tissues was combined from 3 rats per group and processed for gene chip analysis.
Induction of arachidonate 12-lipoxygenase (Alox15) in intestine of iron-deficient rats correlates with the production of biologically active lipid mediators.
No sample metadata fields
View SamplesCumulus oophorus cells play an essential role in oocyte development. CBX4 is a member of the Polycomb complex, which plays a role in regulating cellular differentiation.
Contribution of CBX4 to cumulus oophorus cell phenotype in mice and attendant effects in cumulus cell cloned embryos.
Sex, Specimen part
View SamplesRecent pre-clinical and clinical evidences indicate that hematopoietic stem and progenitor cells (HSPCs) and/or their progeny can serve as vehicles for therapeutic molecule delivery across the blood brain barrier by contributing to the turnover of myeloid cell populations in the brain. However, the differentiation and functional characteristics of the cells reconstituted after transplantation are still to be determined, and in particular whether bona fide microglia could be reconstituted by the donor cell progeny post-transplant to be assessed. We here firstly demonstrate that HSPC transplantation can generate transcriptionally-dependable new microglia through a stepwise process reminiscent of physiological post-natal microglia maturation. Hematopoietic cells able to generate new microglia upon transplantation into myeloablated recipients are retained within human and murine long-term hematopoietic stem cells (HSCs). Similar transcriptionally dependable new microglia cells can also be generated by intra-cerebral ventricular delivery of HSPCs. Importantly, this novel route is associated to a clinically relevant faster and more widespread microglia replacement compared to systemic HSPC injection. Overall, this work supports the relevance and feasibility of employing HSPCs for renewing brain myeloid and microglia cells with new populations endowed with the ability to exert therapeutic effects in the central nervous system, and identifies novel modalities, such as transplantation of enriched stem cell fractions and direct brain delivery of HSPCs, for increasing the actual contribution of the transplanted cells to microgliosis and their therapeutic activity. Overall design: mRNA profiles of µ and TAµ myeloid brain populations were obtained in triplicate mice of Adult control, P10 control and Adult BU-treated mice after GFP Lin-transplantation (both µ and TAµ populations)
Intracerebroventricular delivery of hematopoietic progenitors results in rapid and robust engraftment of microglia-like cells.
Specimen part, Cell line, Subject
View SamplesHuman umbilical cord Whartons jelly stem cells (WHJSC) are gaining attention as a possible clinical source of mesenchymal stem cells for use in cell therapy and tissue engineering due to their high accessibility, expansion potential and plasticity. However, the cell viability changes that are associated to sequential cell passage of these cells are not known. In this analysis, we have identified the gene expression changes that are associated to cell passage in WHJSC.
Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy.
Specimen part
View SamplesGene Expression profiling of HSCs isolated at different stages of ontogeny to address correlation between gene expression and changes in DNA methylation
Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging.
Sex, Age, Specimen part
View SamplesBackground and Aims: HNF4a is a nuclear hormone receptor transcription factor that has been shown to be required for hepatocyte differentiation and development of the liver. It has also been implicated in regulating expression of genes that act in the epithelium of the lower gastrointestinal tract. This implied that HNF4a might be required for development of the gut. Methods: We generated mouse embryos in which HNF4a was ablated in the epithelial cells of the fetal colon using Cre-loxP technology. Embryos were examined using a combination of histology, immunohistochemistry, gene array and RT-PCR, and chromatin immunoprecipitation analyses to define the consequence of loss of HNF4a on colon development. Results: Embryos could be generated until E18.5 that lacked HNF4a in their colon. Although, early stages of colonic development occurred, HNF4a null colons failed to form normal crypts. In addition, goblet cell maturation was perturbed and expression of an array of genes that encode proteins with diverse roles in colon function was disrupted. Several genes whose expression in the colon was dependent on HNF4a contained HNF4abinding sites sequences within putative transcriptional regulatory regions and a subset of these sites were occupied by HNF4a in vivo. Conclusion: HNF4a is a transcription factor that is essential for development of the mammalian colon, regulates goblet cell maturation and is required for expression of genes that control normal colon function and epithelial cell differentiation.
Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon.
Specimen part
View SamplesMyoblasts harvested from a postnatal day 2 WT and Foxj3 KO litter.
Foxj3 transcriptionally activates Mef2c and regulates adult skeletal muscle fiber type identity.
No sample metadata fields
View SamplesA novel mouse line was found to exhibit prominent mechanosensory deficits both behaviorally and at the primary sensory afferents, and exhibits decreased ATP release from the skin.
Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes.
Specimen part
View SamplesSystemic sclerosis (SSc) or scleroderma is a chronic multiorgan autoimmune disease of unknown etiology characterized by vascular, immunological and fibrotic abnormalities. Several lines of evidence have shown that the endocannabinoid system (ECS) may play a role in the pathophysiology of SSc. VCE-004.8, a CBD aminoquinone derivative, is a dual PPAR?/CB2 that alleviates bleomycin (BLM)-induced skin fibrosis. Herein we report that EHP-101, an oral lipidic formulation of VCE-004.8, prevents skin and lung fibrosis and collagen accumulation in BLM challenged mice. Immunohistochemistry analysis of the skin demonstrate that EHP-101 prevents macrophage infiltration, and the expression of Tenascin C (TNC), VCAM, and the a-smooth muscle actin (SMA). In addition, a reduced expression of vascular CD31, paralleling skin fibrosis, was also prevented by EHP-101. RNAseq analysis in skin biopsies showed a clear effect of EHP-101 in the inflammatory and epithelial-mesenchymal transition transcriptomic signatures. TGF-beta regulated genes such as matrix metalloproteinase-3 (Mmp3), cytochrome b-245 heavy chain (Cybb), lymphocyte antigen 6E (Ly6e), vascular cell adhesion molecule-1 (Vcam1) and the Integrin alpha-5 (Itga5) were induced in BLM mice and repressed by EHP-101 treatment. We also intersected differentially expressed genes in EHP-101-treated mice with dataset of human scleroderma intrinsic genes and found 53 overlapped genes, including the C-C motif chemokine 2 (Ccl2) and the interleukin 13 receptor subunit alpha 1 (IL-13Ra1) genes, which have been studied as biomarkers of SSc. Altogether the results indicate that this synthetic cannabinoid qualifies as a novel compound for the management and possible treatment of scleroderma and, potentially, other fibrotic diseases. Overall design: RNA-Seq profiles were generated for six- to eight-week-old female BALB/c mice in three conditions: Control, Bleomycin and Bleomycin + EHP-101 treatment (N=2).
EHP-101, an oral formulation of the cannabidiol aminoquinone VCE-004.8, alleviates bleomycin-induced skin and lung fibrosis.
Specimen part, Cell line, Subject
View SamplesSeveral lines of evidence have shown that the endocannabinoid system (ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Thereby, structurally different dual PPAR?/CB2 agonists such as VCE-004.8 and Ajulemic acid (AjA) have been shown to alleviate skin fibrosis and inflammation in experimental models of SSc. Since both compounds are currently being tested in humans, we were interested to identify similarities and differences in a murine model of SSc. One method available to assess this is the pharmacotranscriptomic signature of the individual compounds. To analyze the pharmacotranscriptomic signature, we used RNA-Seq to analyze the skin gene expression changes from bleomycin-induced fibrosis in mice treated orally with either AjA or EHP-101, a lipidic formulation of VCE-004.8. While both compounds prevented the upregulation of a common group of genes involved in the inflammatory and fibrotic components of the disease and the pharmacotranscriptomic signatures were similar for both compounds in some pathways, we found key differences between the compounds in several functional groups, including genes related the hypoxia, interferon-a and interferon-? response. Additionally, we found 28 specific genes with translation potential by comparing our results with a list of intrinsic human scleroderma genes. Inmunohistochemical analysis revealed that both EHP-101 and AjA prevented bleomycin-induced skin fibrosis, collagen accumulation, and TNC and VCAM expression. However, only EHP-101 normalized the reduced expression of vascular CD31, CD34 and Von Willebrand factor markers, which parallels skin fibrosis, while AjA did not affect these markers. Finally, clear differences were also found in the plasmatic biomarker analysis, in which we found that EHP-101, but not AjA, enhanced the expression of some factors related to angiogenesis and vasculogenesis. Altogether the results indicate that dual PPAR?/CB2 agonists qualify as a novel therapeutic approach for the treatment of SSc and other fibrotic diseases as well, and that EHP-101 has unique mechanisms of action related to the pathophysiology of SSc which could be beneficial in treatment of this complex disease with no current therapeutic options. Overall design: RNA-Seq profiles were generated for six- to eight-week-old female BALB/c mice in four conditions: Control, Bleomycin, Bleomycin + EHP-101 treatment and Bleomycin + Ajulemic acid treatment. Please note that the "raw_counts_newsamples.txt" includes raw counts obtained from featureCounts for the samples included in this entry and the "raw_counts_merged.txt" includes raw counts obtained from merging the counts of the samples from this entry with the counts of the samples from the GSE115503 entry.
Cannabinoid derivatives acting as dual PPARγ/CB2 agonists as therapeutic agents for systemic sclerosis.
Specimen part, Cell line, Subject
View Samples