refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 152 results
Sort by

Filters

Technology

Platform

accession-icon GSE20282
Gfi1 regulates survival and lineage commitment of hematopoietic precursors and prevents myeloproliferative diseases
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Hematopoietic stem cells (HSCs) and lymphoid-primed multi-potential progenitors (LMPPs) are able to initiate both lymphoid and myeloid differentiation. We show here that the transcriptional repressor Gfi1 (growth factor independence 1) implements a specific gene expression program in HSCs and LMPPs that is critical for their survival and lymphoid differentiation potential. We present evidence that Gfi1 is required to maintain expression of genes involved in lymphoid development such as Flt-3, IL7R, Ebf1, Rag1, CCR9 and Notch1 and controls myeloid lineage commitment by regulating expression of genes such as Hoxa9 or M-CSFR. Gfi1 also inhibits apoptosis in HSCs by repressing pro-apoptotic genes such as Bax or Bak. As a consequence, Gfi1-/- mice show defects in self renewal, survival and both myeloid and lymphoid development of HSCs and LMPPs. Co-expression of a Bcl-2 transgene can partially restore the function of HSCs in Gfi1-/- mice, but not the defects in early lymphoid development. Of interest, Gfi1-/- x Bcl-2 transgenic mice show an accelerated expansion of myeloid cells and succumb to a fatal myeloproliferative disease resembling chronic myelomonocytic leukemia (CMML). Our data show that Gfi1 protects HSCs against apoptosis, ensures the proper development of LMPPs and plays a role in the development of myeloid leukemia.

Publication Title

Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28133
Transcriptomic analysis of human retinal detachment (RD) reveals both inflammation and photoreceptor death
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment.

Publication Title

Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE20655
Effect of loss of Gfi1b on hematopietic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Using Gfi1b conditional mice, deletion of gfi1b in the hematopietic system was induced by injecting MxCre tg Gfi1bfl/fl mice with pIpC. 30 days after injection, Cd150 pos, Cd 48 neg, Lin neg Sca and c-kit pos stem cells were sortrted from Gfi1bfl/fl and Mxcre tg Gfi1bfl/fl mice and analysed. We used the mouse Affymetrix Gene ST Array.

Publication Title

Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP052229
Improved transcription and translation with L-leucine stimulation of mTORC1
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 was inhibited and overall translation was reduced in RBS cells. Treatment of RBS cells with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division. In this study, we use RBS as a model for mTOR inhibition and analyze transcription and translation with ribosome profiling to determine genome-wide effects of L-leucine. The translational efficiency of many genes is increased with Lleucine in RBS cells including genes involved in ribosome biogenesis, translation, and mitochondrial function. snoRNAs are strongly upregulated in RBS cells, but decreased with L-leucine. Imprinted genes, including H19 and GTL2, are differentially expressed in RBS cells consistent with contribution to mTORC1 control. This study reveals dramatic effects of L-leucine stimulation of mTORC1 and supports that ESCO2 function is required for normal gene expression and translation. Overall design: 42 samples of human fibroblast cell lines with various genotypes (wt, corrected, and esco2 mutants) are treated with l-leucine or d-leucine (control) for 3 or 24 hours. Biological replicates are present.

Publication Title

Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP042164
RNA-Seq analysis of hnRNPL KO fetal liver cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The proliferation and survival of hematopoietic stem cells (HSCs) has to be strictly coordinated to ensure the timely production of all blood cells. Here we report that the splice factor and RNA binding protein hnRNP L (heterogeneous nuclear ribonucleoprotein L) is required for hematopoiesis, since its genetic ablation in mice reduces almost all blood cell lineages and causes premature death of the animals. In agreement with this, we observed that hnRNP L deficient HSCs lack both the ability to self-renew and foster hematopoietic differentiation in transplanted hosts. They also display mitochondrial dysfunction, elevated levels of ?H2AX, are Annexin V positive and incorporate propidium iodide indicating that they undergo cell death. Lin(-)c-Kit(+) fetal liver cells from hnRNP L deficient mice show high p53 protein levels and up-regulation of p53 target genes. In addition, cells lacking hnRNP L up-regulated the expression of the death receptors TrailR2 and CD95/Fas and show Caspase-3, Caspase-8 and Parp cleavage. Treatment with the pan-caspase inhibitor Z-VAD-fmk, but not the deletion of p53, restored cell survival in hnRNP L deficient cells. Our data suggest that hnRNP L is critical for the survival and functional integrity of HSCs by restricting the activation of caspase-dependent death receptor pathways. Overall design: fetal liver cells from either hnRNPL wild-type or hnRNPL KO embryos were analysed for differential expression and alternative splicing by RNA-Seq. RNA-Seq was carried out in biological triplicate for each sample type. Each sample is a single embryo.

Publication Title

Heterogeneous Nuclear Ribonucleoprotein L is required for the survival and functional integrity of murine hematopoietic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77425
Control of the inflammatory macrophage transcriptional signature by miR-155
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Classically activated (M1) macrophages protect from infection but can cause inflammatory disease and tissue damage while alternatively activated (M2) macrophages reduce inflammation and promote tissue repair. Modulation of macrophage phenotype may be therapeutically beneficial and requires further understanding of the molecular programs that control macrophage differentiation. A potential mechanism by which macrophages differentiate may be through microRNA (miRNA), which bind to messenger RNA and post-transcriptionally modify gene expression, cell phenotype and function. The inflammation-associated miRNA, miR-155, was rapidly up-regulated over 100-fold in M1, but not M2, macrophages. Inflammatory M1 genes and proteins iNOS, IL-1b and TNF-a were reduced up to 72% in miR-155 knockout mouse macrophages, but miR-155 deficiency did not affect expression of genes associated with M2 macrophages (e.g., Arginase-1). Additionally, a miR-155 oligonucleotide inhibitor efficiently suppressed iNOS and TNF-a gene expression in wild-type M1 macrophages. Comparative transcriptional profiling of unactivated (M0) and M1 macrophages derived from wild-type and miR-155 knockout (KO) mice revealed an M1 signature of approximately 1300 genes, half of which were dependent on miR-155. Real-Time PCR of independent datasets validated miR-155's contribution to induction of iNOS, IL-1b, TNF-a, IL-6 and IL-12, as well as suppression of miR-155 targets Inpp5d, Tspan14, Ptprj and Mafb. Overall, these data indicate that miR-155 plays an essential role in driving the differentiation and effector potential of inflammatory M1 macrophages.

Publication Title

Control of the Inflammatory Macrophage Transcriptional Signature by miR-155.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP148693
Next generation sequencing of distal colon glial cells with DNBS-induced inflammation and neurokinin-2 receptor antagonism utilizing RiboTag mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose:We have the first-reported set of glial-specific transcripts utilizing the Ribotag model. We use this model to explore glial changes in DNBS-induced inflammation and neurokinin-2 receptor (NK2R) antagonism. Methods: Actively translated mRNA profiles of the distal colon myeneteric plexi of Rpl22(+/-)Sox10(+/-) male and female mice 8-10 weeks old were obtained utilizing the HA-tagged ribosomal immunoprecipitation and downstream RNA extraction. Samples meeting RNA quality standards by 18S and 28S rRNA peaks by 2100 Bioanalyzer and RNA 6000 Nano LabChip Kit (Agilent) were deep sequenced with the Illumina HiSeq 4000. Results: We mapped approximately 30-50 millions reads per sample to the mouse genome (v88) and identified approximately 100K ribosome-associated transcripts, with Tuxedo workflow, in distal colon glial cells with DNBS-induced inflammation and NK2R antagonism and their respective controls. Of these transcripts, changes in biological processes associated with inflammation and other important enteric nervous system communications between samples have been identified. Conclusions: Our study demonstrates the first use of the Ribotag model to provide glial cell-specific actively-translated mRNA changes in DNBS-induced inflammation with and without functional NK2R signalling. Overall design: Distal colon glial mRNA samples from Ribotag Rpl22(+/-)Sox10(+/-) mice administered either saline or DNBS and DMSO vehicle or NK2R antagonism.

Publication Title

Communication Between Enteric Neurons, Glia, and Nociceptors Underlies the Effects of Tachykinins on Neuroinflammation.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon E-TABM-163
Transcription profiling of murine presomitic mesoderms of 17 samples at various time points to identify cyclic genes of the mouse segmentation clock
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2), Affymetrix Mouse Expression 430A Array (moe430a)

Description

A microarray time series was generated to identify cyclic genes of the segmentation clock in the mouse. The right posterior half presomitic mesoderms (PSM) from 17 mouse embryos were dissected while the contralateral side of the embryo containing the left PSM was immediately fixed to be analyzed by in situ hybridization using a Lfng probe to order the samples along the segmentation clock oscillation cycle. Probes were produced from RNA extracted from the 17 dissected posterior half PSMs using a two-step amplification protocol and were hybridized to Affymetrix GeneChip MOE430A. The reproducibility of the amplification procedure was initially assessed by comparing array data generated from the right and the left posterior PSM from the same embryo. Because of the symmetry of the paraxial mesoderm along the left-right axis, left and right samples are expected to show overtly similar gene expression. RNA was amplified from three such sample pairs (1, a and b; 2, a and b; 3, a and b) and hybridized on Murine Genome U74Av2 array (MG-U74Av2)

Publication Title

A complex oscillating network of signaling genes underlies the mouse segmentation clock.

Sample Metadata Fields

Age, Specimen part, Subject, Time

View Samples
accession-icon SRP174994
Induction and Therapeutic Targeting of Human NPM1c+ Myeloid Leukemia in the Presence of Autologous Immune System in Mice
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: To understand the molecular mechanisms underlying NPM1c-mediated tumorigenesis by comparing the transcriptome of de novo generated bulk human leukemic cells and leukemic stem cells Overall design: Human hematopoietic stem/progenitor cells (HSPC) are transduced with lentiviruses expressing a mutated form of Nucleophosmin (NPM1c). Following engraftment into immunodeficient mice, transduced HSPCs give rise to human myeloid leukemia whereas untransduced HSPCs give rise to human immune cells in the same mice. The de novo AML, with CD123+ leukemic stem cells (LSC), resembles NPM1c+ AML from patients.

Publication Title

Induction and Therapeutic Targeting of Human NPM1c<sup>+</sup> Myeloid Leukemia in the Presence of Autologous Immune System in Mice.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE34304
Poised RNA Polymerase II changes over developmental time and prepares genes for future expression
  • organism-icon Mus musculus, Drosophila melanogaster
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Poised RNA polymerase II changes over developmental time and prepares genes for future expression.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact