This SuperSeries is composed of the SubSeries listed below.
Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening.
No sample metadata fields
View SamplesTranscription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with an imbalance proportion of Yra1, a component of THO/TREX.
Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening.
No sample metadata fields
View SamplesBrown adipose tissue (BAT) thermogenesis and the browning of white adipose tissue are important components of energy expenditure. An RNAseq-based analysis of the mouse BAT transcriptome led us to identify GPR120 as a gene induced by thermogenic activation. GPR120, a G protein-coupled receptor binding unsaturated long-chain fatty acids, is known to mediate some beneficial metabolic actions of polyunsaturated fatty acids. We show that pharmacological activation of GPR120 induces BAT activity and promotes the browning of white fat in mice, whereas GRP120-null mice show impaired browning in response to cold. n-3 polyunsaturated fatty acids induce brown and beige adipocyte differentiation and thermogenic activation, and these effects require GPR120. GPR120 activation induces the release of fibroblast growth factor-21 (FGF-21) by brown and beige adipocytes and increases blood FGF21 levels. The effects of GPR120 activation are impaired in FGF21-null mice and cells. Thus, the lipid sensor GPR120 constitutes a novel pathway of brown fat activation and involves FGF21. Overall design: eight adult male C57BL6 mice were maintained at thermoneutral temperature (29C). After two weeks, a subset of four mice was placed at 4C environment temperature for 24h. RNAseq was performed on the BAT tissues of these 2 groups.
The kallikrein-kinin pathway as a mechanism for auto-control of brown adipose tissue activity.
Sex, Specimen part, Subject
View SamplesIdentifying the signals that regulate the survival, lineage allocation and specification of pancreas progenitors will help elucidate the embryonic origins of pancreas dysfunction and provide important cues for the efficient conversion of pluripotent stem cells into fully functional ß cells. Several transcription factors regulating the conversion of the early pancreatic progenitors into terminally differentiated cells have been identified but extracellular signals regulating pancreas development are less well understood. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata and genomics we have found that sphingosine-1-phosphate signalling through plays a key role in this process. S1p signalling stabilizes the Hippo pathway effector YAP to promote progenitor survival, acinar and endocrine specification. Endocrine cell specification relies on Gai subunits revealing an unexpected dependence of lineage specification on selected intracellular signalling components. Independently of YAP stabilization, S1p signalling attenuates Notch levels, thus regulating lineage allocation. These findings identify S1p signalling as a key pathway coordinating cell survival, lineage allocation and specification during pancreas development. Overall design: Analysis was carried out at 14.5 dpc embryonic pancreata and in 14.5 dpc embryonic pancreata that have been cultured in air to liquid interface cultures for two days (14.5 + 2). For the 14.5 dpc analysis wild type (14.5 wt) and S1pr2 null (14.5 S1pr2 null) pancreata were analyzed. For the analysis of cultured embryonic pancreata, conditions used were either standard conditions (14.5 + 2) or in the presence of 15 uM of JTE013 (14.5 + 2 + JTE) or in the presence of 15 uM of JTE013 and 50 ng/ml CTGF (14.5 + 2 + JTE + CTGF). Three biological replicates were used for each stage/condition for a total of 15 samples.
Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling.
Cell line, Subject
View SamplesDownregulation of the hematopoietic transcription factor PU.1 in PU.1 low acute myeloid leukemia cells (AML) by novel heterocyclic diamidines or PU.1 inhibitors leads to decrease cell proliferation and apoptosis, representing a new therapeutic strategy for AML treatment. These inhibitors induces decreased PU.1 binding on its target sites, as well as deregulation in PU.1 canonical target genes
Pharmacological inhibition of the transcription factor PU.1 in leukemia.
Specimen part, Cell line
View SamplesRegulatory T cells (Treg cells) expressing the forkhead family transcription factor Foxp3 are critical mediators of dominant immune tolerance to self. Most Treg cells constitutively express the high-affinity interleukin 2 (IL-2) receptor alpha-chain (CD25); however, the precise function of IL-2 in Treg cell biology has remained controversial. To directly assess the effect of IL-2 signaling on Treg cell development and function, we analyzed mice containing the Foxp3gfp knock-in allele that were genetically deficient in either IL-2 (Il2-/-) or CD25 (Il2ra-/-). We found that IL-2 signaling was dispensable for the induction of Foxp3 expression in thymocytes from these mice, which indicated that IL-2 signaling does not have a nonredundant function in the development of Treg cells. Unexpectedly, Il2-/- and Il2ra-/- Treg cells were fully able to suppress T cell proliferation in vitro. In contrast, Foxp3 was not expressed in thymocytes or peripheral T cells from Il2rg-/- mice. Gene expression analysis showed that IL-2 signaling was required for maintenance of the expression of genes involved in the regulation of cell growth and metabolism. Thus, IL-2 signaling seems to be critically required for maintaining the homeostasis and competitive fitness of Treg cells in vivo.
A function for interleukin 2 in Foxp3-expressing regulatory T cells.
No sample metadata fields
View Samplesanalyzed changes in cytokine/chemokine production and gene expression levels in, human peripheral blood mononuclear cells upon teratment with 15M,2,4-benzenetriol
Identification of human cell responses to benzene and benzene metabolites.
No sample metadata fields
View SamplesTrimethylated histone H3-lysine 4 is primarily distributed in the form of sharp peaks, extending in neuronal chromatin on average only across 500-1500 base pairs mostly in close proximity to annotated transcription start sites. To explore whether H3K4me3 peaks could also extend across much broader domains, we undertook a detailed analysis of broadest domain cell-type specific H3K4me3 peaks in ChIP-seq datasets from sorted neuronal and non-neuronal nuclei in human, non-human primate and mouse prefrontal cortex (PFC), and blood for comparison. Overall design: We collected separately cortical gray (GM) and subcortical white matter (WM) from 6 adult human subjects without neurological disease and extracted total RNA processed by the RNA-Seq approach.
Deciphering H3K4me3 broad domains associated with gene-regulatory networks and conserved epigenomic landscapes in the human brain.
No sample metadata fields
View SamplesSingle O-GlcNAc modification orchestrate by O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA alias MGEA5) enzymes, affects signal transduction and gene expression by chromatin modulation. We developed Oga deleted MEF (mouse embryonic fibroblast) cells to investigate effects of O-GlcNAc modification in mice. RNA isolated from Mouse Embryonic Fibroblast cells generated from Oga Knock out (KO) Heterozygous (Het) and wild type (WT) cells and subjected to microarray analysis.
Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis.
Sex, Specimen part
View SamplesPPARg and C/EBPa cooperate to control preadipocyte differentiation (adipogenesis). However, the factors that regulate PPARg and C/EBPa expression during adipogenesis remain largely unclear. Here we show PTIP, a protein that associates with histone H3K4 methyltransferases, regulates PPARg and C/EBPa expression in mouse embryonic fibroblasts (MEFs) and during preadipocyte differentiation. PTIP deletion in MEFs leads to marked decreases of PPARg expression and PPARg-stimulated C/EBP expression. Further, PTIP is essential for induction of PPARg and C/EBPa expression during preadipocyte differentiation. Deletion of PTIP impairs the enrichment of H3K4 trimethylation and RNA polymerase II on PPARg and C/EBPa promoters. Accordingly, PTIP-/- MEFs and preadipocytes all show striking defects in adipogenesis. Furthermore, rescue of the adipogenesis defect in PTIP-/- MEFs requires co-expression of PPARg and C/EBPa. Finally, deletion of PTIP in brown adipose tissue significantly reduces tissue weight in mice. Thus, by regulating PPARg and C/EBPa expression, PTIP plays a critical role in adipogenesis.
Histone methylation regulator PTIP is required for PPARgamma and C/EBPalpha expression and adipogenesis.
Cell line
View Samples