refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 94 results
Sort by

Filters

Technology

Platform

accession-icon GSE16391
GGI: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1-98 trial
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: We have previously shown that the Gene expression Grade Index (GGI) was able to identify two subtypes of estrogen receptor (ER)-positive tumors that were associated with statistically distinct clinical outcomes in both untreated and tamoxifen-treated patients. Here, we aim to investigate the ability of the GGI to predict relapses in postmenopausal women who were treated with tamoxifen (T) or letrozole (L) within the BIG 1-98 trial.

Publication Title

The Gene expression Grade Index: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1-98 trial.

Sample Metadata Fields

Age, Specimen part, Disease stage, Treatment

View Samples
accession-icon SRP198810
Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons
  • organism-icon Mus musculus
  • sample-icon 570 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report the comparative gene expression between embryonic stem cell derived cranial and spinal motor neurons and multiple time points after induction and primary cultured ocular and spinal motor neurons, using single cell RNA sequencing. Overall design: Single neurons were isolated in 96-well plates and their gene expression profiled using SMART-Seq2 from 8 samples: (1-2) primary cultured oculomotor/trochlear motor neurons and spinal motor neurons collected at embryonic day E11.5 and cultured for 7 days, (3-8) ESC-derived induced cranial and spinal motor neurons at either 2 days, 5 days, or 7 days after plating.

Publication Title

Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP167827
SOS1-mutant cells share a similar transcriptional profile as KRAS G12V cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA sequencing in NIH-3T3 cells Overall design: Transcriptome analysis for three biological replicates of pLX307, SOS1 WT, SOS1 N233Y, and KRAS G12V cells

Publication Title

Identification and Characterization of Oncogenic <i>SOS1</i> Mutations in Lung Adenocarcinoma.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE67784
A Gene Expression-based Blood Diagnostic for Symptomatic Transthyretin Amyloidosis Revealing Male and Female-specific Signatures
  • organism-icon Homo sapiens
  • sample-icon 308 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Early diagnosis of transthyretin (TTR) amyloid diseases remains challenging because of variable disease penetrance. Currently, patients must have an amyloid positive tissue biopsy to be eligible for disease modifying therapies. Early diagnosis is often difficult because the patient exhibits apparent symptoms of polyneuropathy or cardiomyopathy, but has a negative amyloid biopsy. Thus, there is a pressing need for more objective, quantitative diagnostics and biomarkers of TTR-aggregation-associated polyneuropathy and cardiomyopathy. This is especially true in the context of clinical trials demonstrating significant disease modifying effects, e.g. when the TTR tetramer stabilizer tafamidis was administered to familial amyloid polyneuropathy (FAP) patients early in the disease course. When asked if the findings of the tafamidis registration trial were sufficiently robust to provide substantial evidence of efficacy for a surrogate endpoint that is reasonably likely to predict a clinical benefit the advisory committee said yes, but the FDA rejected the tetramer stabilization surrogate biomarker required for orphan tafamidis approvalhence, acceptable biomarkers are badly needed. Herein, we explored whether peripheral blood cell mRNA expression profiles could differentiate symptomatic from asymptomatic V30M FAP patients, and if such a profile would normalize upon tafamidis treatment. We demonstrate that blood cell gene expression patterns reveal sex-independent as well as male and female specific inflammatory signatures in symptomatic FAP patients, but not in asymptomatic carriers, that normalize in FAP patients 6 months after tafamidis treatment. Thus these signatures have potential both as an early diagnostic and as a surrogate biomarker for measuring response to treatment in FAP patients.

Publication Title

Peripheral Blood Cell Gene Expression Diagnostic for Identifying Symptomatic Transthyretin Amyloidosis Patients: Male and Female Specific Signatures.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE13785
Novel mediators of eicosanoid and epithelial nitric oxide production in asthma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Asthma is a heterogeneous disease. Exercise-induced bronchoconstriction (EIB) is a distinct syndrome that occurs in 30-50% of asthmatics and is characterized by high levels of pro-inflammatory eicosanoids. We identified genes differentially expressed in the airways of asthmatics with EIB relative to asthmatics without EIB. Genes related to epithelial repair and mast cell infiltration including beta-tryptase and carboxypeptidase A3 were upregulated by exercise challenge in the asthma group with EIB. We confirmed that two novel mediators trefoil factor 3 (TFF3) and transglutaminase 2 (TGM2) have increased expression in airways cells and secreted product in the airways. In vitro studies indicate that 1) TFF3 induces nitric oxide synthase in airway epithelial cells from asthmatics and 2) TGM2 augments the enzymatic activity of secreted phospholipase A2 (sPLA2) group X, an enzyme recently been implicated in asthma pathogenesis. Since PLA2 serves as the first rate-limiting step leading to eicosanoid generation, these results suggest that TGM2 may be a key initiator of the airway inflammatory cascade in asthma.

Publication Title

Transglutaminase 2, a novel regulator of eicosanoid production in asthma revealed by genome-wide expression profiling of distinct asthma phenotypes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67311
Peripheral Blood Gene Expression in Fibromyalgia Patients Reveals Potential Biological Markers and Physiological Pathways
  • organism-icon Homo sapiens
  • sample-icon 140 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Fibromyalgia (FM) is a common pain disorder characterized by dysregulation in the processing of pain. Although FM has similarities with other rheumatologic pain disorders, the search for objective markers has not been successful. In the current study we analyzed gene expression in the whole blood of 70 fibromyalgia patients and 70 healthy matched controls. Global molecular profiling revealed an upregulation of several inflammatory molecules in FM patients and downregulation of specific pathways related to hypersensitivity and allergy. There was a differential expression of genes in known pathways for pain processing, such as glutamine/glutamate signaling and axonal development. We also identified a panel of candidate gene expression-based classifiers that could establish an objective blood-based molecular diagnostic to objectively identify FM patients and guide design and testing of new therapies. Ten classifier probesets (CPA3, C11orf83, LOC100131943, RGS17, PARD3B, ANKRD20A9P, TTLL7, C8orf12, KAT2B and RIOK3) provided a diagnostic sensitivity of 95% and a specificity of 96%. Molecular scores developed from these classifiers were able to clearly distinguish FM patients from healthy controls. An understanding of molecular dysregulation in fibromyalgia is in its infancy; however the results described herein indicate blood global gene expression profiling provides many testable hypotheses that deserve further exploration.

Publication Title

Genome-wide expression profiling in the peripheral blood of patients with fibromyalgia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE25673
Comparing Control and Schizophrenic hiPSC-derived Neurons
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Schizophrenia is a debilitating neurological disorder for which no cure exists. Few defining characteristics of schizophrenic neurons have been identified and the molecular mechanisms responsible for schizophrenia are not well understood, in part due to the lack of patient material for study. Human induced pluripotent stem cells (hiPSCs) offer a new strategy for studying schizophrenia. We have created the first cell-based human model of a complex genetic psychiatric disease by generating hiPSCs from schizophrenic patients and subsequently differentiating these cells to hiPSC-derived neurons in vitro. Schizophrenic hiPSC-derived neurons showed diminished neuronal connectivity in conjunction with decreased neurite number, PSD95-protein levels and glutamate receptor expression. Gene expression profiles of schizophrenic hiPSC-derived neurons identified altered expression of many components of the cAMP and WNT signaling pathways. Key cellular and molecular elements of the schizophrenic phenotype were ameliorated following treatment of schizophrenic hiPSC-derived neurons with the antipsychotic loxapine.

Publication Title

Modelling schizophrenia using human induced pluripotent stem cells.

Sample Metadata Fields

Sex, Disease, Disease stage

View Samples
accession-icon GSE10591
Expression in HepG2 cells with overexpression of TMPRSS6 or its mutant version.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

TMPRSS6 is a type II transmembrane serine protease and is revealed by our work to be part of a low-iron sensing pathway. When animal gets iron deficient, TMPRSS6 is required to shut off hepcidin gene, so as to allow iron to be uptaken from GI tract. The mutant mouse, which was generated by ENU mutagenesis, has developed microcytic anemia. The phenotype is caused by a splicing error in Tmprss6 gene. However, the mechanism of TMPRSS6 effect remains elusive. To gain further insight into the molecular components of the TMPRSS6 signaling pathway, we overexpressed either TMPRSS6 or its mutant version of protein in human liver carcinoma cell line HepG2 cells, and compared the transcription status betweem these two treatments.

Publication Title

The serine protease TMPRSS6 is required to sense iron deficiency.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77634
Enhanced CLIP (eCLIP) enables robust and scalable transcriptome-wide discovery and characterization of RNA binding protein binding sites
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE77339
Enhanced CLIP (eCLIP) enables robust and scalable transcriptome-wide discovery and characterization of RNA binding protein binding sites [array]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.

Publication Title

Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact