refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 94 results
Sort by

Filters

Technology

Platform

accession-icon GSE76953
Gene expression analysis of MCF12A human breast cultures exposed to ethanol or acetaldehyde
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE76951
Gene expression analysis of MCF12A human breast cultures exposed to ethanol or acetaldehyde [4 weeks]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Alcoholism is associated with breast cancer incidence and progression, and moderate chronic consumption of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic effects are unknown, but it has been speculated that they may be mediated by acetaldehyde. Here, we use the immortalized normal human epithelial breast cell line MCF-12A to determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concentrations, induces their oncogenic transformation and/or the acquisition of epithelial mesenchymal transition (EMT). Cultures of MCF-12A cells were incubated with 25 mM ethanol or 2.5 mM acetaldehyde for 1 week, or with lower concentrations (1.0-2.5 mM for ethanol, 1.0 mM for acetaldehyde) for 4 weeks. In the 4 wk incubation, cells were also tested for anchorage independence, including isolation of soft agar selected cells (SASC) from the 2.5 mM ethanol incubations. Cells were analyzed by immuno-cytofluorescence, flow cytometry, western blotting, DNA microarrays, RT/PCR, and assays for miRs. We found that short-term exposure to ethanol, but not, in general, to acetaldehyde, was associated with transcriptional upregulation of the metallothionein family genes, alcohol metabolism genes, and genes suggesting the initiation of EMT, but without related phenotypic changes. Long-term exposure to the lower concentrations of ethanol or acetaldehyde induced frank EMT changes in the monolayer cultures and in SASC as demonstrated by changes in cellular phenotype and mRNA expression. This suggests that low concentrations of ethanol, with little or no mediation by acetaldehyde, induce EMT and some traits of oncogenic transformation such as anchorage independence in normal breast epithelial cells.

Publication Title

Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE76950
Gene expression analysis of MCF12A human breast cultures exposed to ethanol or acetaldehyde [1 week]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Alcoholism is associated with breast cancer incidence and progression, and moderate chronic consumption of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic effects are unknown, but it has been speculated that they may be mediated by acetaldehyde. Here, we use the immortalized normal human epithelial breast cell line MCF-12A to determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concentrations, induces their oncogenic transformation and/or the acquisition of epithelial mesenchymal transition (EMT). Cultures of MCF-12A cells were incubated with 25 mM ethanol or 2.5 mM acetaldehyde for 1 week, or with lower concentrations (1.0-2.5 mM for ethanol, 1.0 mM for acetaldehyde) for 4 weeks. In the 4 wk incubation, cells were also tested for anchorage independence, including isolation of soft agar selected cells (SASC) from the 2.5 mM ethanol incubations. Cells were analyzed by immuno-cytofluorescence, flow cytometry, western blotting, DNA microarrays, RT/PCR, and assays for miRs. We found that short-term exposure to ethanol, but not, in general, to acetaldehyde, was associated with transcriptional upregulation of the metallothionein family genes, alcohol metabolism genes, and genes suggesting the initiation of EMT, but without related phenotypic changes. Long-term exposure to the lower concentrations of ethanol or acetaldehyde induced frank EMT changes in the monolayer cultures and in SASC as demonstrated by changes in cellular phenotype and mRNA expression. This suggests that low concentrations of ethanol, with little or no mediation by acetaldehyde, induce EMT and some traits of oncogenic transformation such as anchorage independence in normal breast epithelial cells.

Publication Title

Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP017294
Genomewide analysis of U1C-dependent alternative splicing
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

To investigate whether U1C plays a role in splicing regulation in human system, we performed siRNA-mediated knockdown of U1C in HeLa cells and analyzed alternative splicing patterns by high-throughput RNA sequencing (RNAseq) Overall design: RNAseq performed with poly(A)+ selected total RNA from U1C-knockdown and control-treated HeLa cells

Publication Title

A novel intra-U1 snRNP cross-regulation mechanism: alternative splicing switch links U1C and U1-70K expression.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE72013
MCF-7 human breast cancer cells treated with ethanol: DNA microarray expression data and microRNA prevalence data
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37562
hnRNP L-RNA in HeLa
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE37561
Expression data from HeLa cells after hnRNP L knockdown (versus luciferase control), including cycloheximide treatment
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Transient siRNA-mediated knockdown of hnRNP L, followed by cycloheximide treatment to eliminate NMD.

Publication Title

Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE68608
C9ORF72 GGGGCC expanded repeats produce splicing dysregulation which correlates with disease severity in amyotrophic lateral sclerosis
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE95529
ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The rediscovery of estrogen receptor (ESR1) mutations in metastatic breast cancer is current clinical scenario. We have modeled the three most frequent ESR1 mutations using stable lentiviral vectors in human breast cancer cell lines, and determined that they confer relative resistance to tamoxifen (Tam) in a cell-type specific manner due to distinct epigenetic changes. Resistance was only observed with concomitant engagement and activation of the insulin growth factor signaling pathway (IGF1R). The ESR1 mutants also exhibited enhanced binding with insulin growth factor receptor beta (IGF1R). The selective estrogen degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while the combination treatment with the mTOR inhibitor everolimus, restored Tam sensitivity. Since we detected relatively high frequencies of these three mutations in primary breast tumors, our results suggest that clinical targeted sequencing of both primary and metastatic tumors may be justified and comination therapies considered.

Publication Title

ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP052235
HP1 is involved in regulating the global impact of DNA methylation on alternative splicing
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can act both as an enhancer and as a silencer of splicing, and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by Heterochromatin protein 1 (HP1), which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene, and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene’s alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation''s significant global influence on mRNA splicing, and identify a specific mechanism of splicing regulation mediated by HP1. Overall design: BS-seq on WT mouse ES cells (2 replicates), MNase-seq on WT and TKO cells (3 replicates), mRNA-seq on WT and TKO cells as well as HP1 knock-down cells (2 replicates for each sample)

Publication Title

HP1 is involved in regulating the global impact of DNA methylation on alternative splicing.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact