Expression data from antigen-experienced Nfat1+/+ and Nfat1-/- CD4+ T cells following 21 days of Plasmodium yoelii 17XNL infection.
The Transcription Factor NFAT1 Participates in the Induction of CD4<sup>+</sup> T Cell Functional Exhaustion during Plasmodium yoelii Infection.
Sex, Specimen part
View SamplesThe first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between TOC1 and CCA1/LHY. CCA1 and LHY are MYB transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data supports that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the Pseudoreceiver (PR) domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify new potential TOC1 targets and output pathways. Together these results define the biochemical action of the core clock protein TOC1 and refine our perspective on how plant clocks function.
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
No sample metadata fields
View SamplesHistone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from DSS-induced murine colitis. While tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal Disease Activity Index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation
The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Medulloblastoma subgroups remain stable across primary and metastatic compartments.
Sex, Age, Specimen part, Subject
View SamplesAffymetrix Human Gene 2.0 ST Array profiling of 9 pairs of matched primary-metastases medulloblastoma samples.
Medulloblastoma subgroups remain stable across primary and metastatic compartments.
Sex, Age, Specimen part, Subject
View SamplesRNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.
RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.
No sample metadata fields
View SamplesRNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.
RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.
No sample metadata fields
View SamplesRNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.
RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.
No sample metadata fields
View SamplesRNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.
RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.
No sample metadata fields
View SamplesHepatocyte-nuclear-factor-4 (Hnf4) is a transcription factor that controls epithelial cell polarity and maturation during embryogenesis. Hnf4 conditional deletion during post-natal development results in minor consequences on intestinal epithelium integrity but promotes activation of the Wnt/-catenin pathway. Here we show that Hnf4 does not act as a tumor suppressor gene but is crucial to promote gut tumorigenesis in mice. Polyp multiplicity in ApcMin mice that lacks Hnf4 is suppressed in comparison to littermate ApcMin controls. Analysis of microarray gene expression profiles from mice lacking Hnf4 in the intestinal epithelium identifies its novel function in regulating the expression of reactive oxygen species (ROS) detoxifying genes. This role is supported with the demonstration that HNF4 is functionally involved in the protection against spontaneous and 5-fluorouracil chemotherapy-induced production of intracellular ROS in colorectal cancer cell lines. The analysis of a colorectal cancer patient cohort establishes that HNF4 is significantly up-regulated at both gene transcript and protein levels in tumors relative to adjacent benign epithelial resections. Several genes involved in ROS neutralization are also up-regulated in correlation with HNF4 expression. All together, the findings point to the nuclear receptor HNF4 as a potential therapeutic target to eradicate aberrant epithelial cell resistance to ROS production during intestinal tumorigenesis.
Hepatocyte nuclear factor-4alpha promotes gut neoplasia in mice and protects against the production of reactive oxygen species.
Specimen part
View Samples