refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 278 results
Sort by

Filters

Technology

Platform

accession-icon GSE38580
KAP1 regulates gene networks controlling T cell development and activation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

KAP1 regulates gene networks controlling T-cell development and responsiveness.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34447
Gene expression analysis of wild type and KAP1 KO mouse T cell progenitors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The modulation of chromatin status at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by KAP1, the universal cofactor of KRAB-containing Zinc Finger Proteins (KRAB-ZFPs), a tetrapod-restricted family of transcriptional repressors. T cell-specific Kap1 knockout mice displayed a significant expansion of immature thymocytes and imbalances in the ratios of mature T cells in the thymus and the spleen, with impaired responses to TCR stimulation. Transcriptome and chromatin studies revealed that KAP1 directly controls the expression of a number of genes involved in TCR and cytokine signalling, among which Traf1 and FoxO1, and is strongly associated with cis-acting regulatory elements marked by the H3K9me3 repressive mark on the genome of thymic T cells. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB/ZFPs are selectively expressed in T lymphoid cells. These results reveal the so far unsuspected yet important role of KRAB/KAP1-mediated epigenetic regulation in T lymphocyte differentiation and activation.

Publication Title

KAP1 regulates gene networks controlling T-cell development and responsiveness.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6420
Effect of LARK overexpression in CNS neurons
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

The goal of this study is to identify, in the head of adult flies, mRNA species whose expresson level are altered by overexpression of the Drosophila RNA-binding protein LARK in CNS neurons.

Publication Title

The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6418
RNAs associated with LARK in Drosophila pharate adult brain
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Circadian behaviors are regulated by intrinsic biological clocks consisting of central molecular oscillators and output pathways. Despite significant progress in elucidating the central timekeeping mechanisms, the molecular pathways coupling the circadian pacemaker to overt rhythmic behavior and physiology remain elusive. The Drosophila LARK RNA-binding protein is a candidate for such a coupling factor. Previous research indicates that LARK functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the Drosophila circadian system, we sought to identify RNA molecules associated with LARK in vivo, using a novel strategy that involves capturing the RNA ligands by immunoprecipitation, visualizing the captured RNAs using whole gene microarrays, and identifying functionally relevant targets through genetic screens.

Publication Title

The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46500
Gene expression data for three mouse auditory brainstem nuclei at two times of development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Genome-wide gene expression was obtained in three auditory brainstem nuclei (defined below), at two different ages in mice, postnatal day (P)3 and P14. The primary aim was to identify genes which are differentially expressed between the medial nucleus of the trapezoid body (MNTB) and the superior olive (LSO), at both age groups.

Publication Title

BMP signaling specifies the development of a large and fast CNS synapse.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9202
Expression data from mouse microvascular transcriptomes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Little is known about the pan-microvascular transcriptome, particularly considering gene transcripts and their encoded proteins that can be considered as vascular-selective in their expression.

Publication Title

Identification of a core set of 58 gene transcripts with broad and specific expression in the microvasculature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107039
Epigenetic and transcriptomic signature of aging in human liver
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE107037
Epigenetic and transcriptomic signature of aging in human liver [expression]
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling of liver biopsies collected from 33 healthy liver donors ranging from 13 to 90 years old. The Affymetrix HG-U133 Plus 2.0 GeneChip platform was used to evaluate gene-expression.

Publication Title

Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE15907
Immunological Genome Project data Phase 1
  • organism-icon Mus musculus
  • sample-icon 638 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene-expression microarray datasets generated as part of the Immunological Genome Project (ImmGen). Primary cells from multiple immune lineages are isolated ex-vivo, primarily from young adult B6 male mice, and double-sorted to >99% purity. RNA is extracted from cells in a centralized manner, amplified and hybridized to Affymetrix 1.0 ST MuGene arrays. Protocols are rigorously standardized for all sorting and RNA preparation. Data is released monthly in batches of cell populations.

Publication Title

Transcriptomes of the B and T lineages compared by multiplatform microarray profiling.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE12599
Transcriptional profiling of mouse glomerulus in lipopolysaccharide-induced proteinuria model
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The pathogenic mechanisms of common kidney glomerular diseases, including the vast majority of cases of proteinuria, remain unknown.

Publication Title

Glomerular transcriptome changes associated with lipopolysaccharide-induced proteinuria.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact