refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 138 results
Sort by

Filters

Technology

Platform

accession-icon SRP034009
Transcriptomic profiling of HeLa cells infected with Salmonella Typhimurium
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We evaluated the transcriptome changes induced by infection with Salmonella (20 hpi, MOI 100). Overall design: Transcriptmic profiles of HeLa cells infected with Salmonella Typhimurium were generated by deep sequencing, using Illumina HiSeq 2000.

Publication Title

Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP034007
Profiling of miRNA expression of HeLa cells infected with Salmonella Typhimurium
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We identified miRNAs differentially regulated upon Salmonella infection by comparative deep-sequencing analysis of cDNA libraries prepared from the small RNA population (10–29 nt) of HeLa cells infected with Salmonella (20 hpi) and mock-treated cells. Considering that at a MOI of 25 Salmonella is internalized in only 10-15% of the HeLa cells, we separated the fraction of cells which had internalized Salmonella (Salmonella+) from the bystander fraction (Salmonella-) by fluorescence-activated cell sorting (FACS), and extended the analysis of miRNA changes to these samples. Interestingly, we observed that Salmonella infection induces a significant decrease in the expression of all the detected members of the miR-15 family Overall design: miRNA profiles of HeLa cells infected with Salmonella Typhimurium were generated by deep sequencing, using Illumina HiSeq2000.

Publication Title

Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP034008
Transcriptomic profiling of HeLa cells treated with miR-15a, miR-16, miR-503 and control-miR
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To have a global picture of the targets of the miR-15 family, we assessed transcriptome changes, by deep-sequencing, of HeLa cells transfected with 3 members of the miR-15 family (miR-15a, miR-16 or miR-503) or a control miRNA (cel-miR-231). We observed a very extensive overlap between the genes down-regulated by these 3 miRNAs, as expected for miRNAs belonging to the same family. Overall design: transcriptmic profiles of HeLa cells treated miR-15a, miR-16, miR-503 and control-miR were generated by deep sequencing, using Illumina HiSeq2000.

Publication Title

Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP016088
Transcript expression levels of neonatal mouse cardiomyocytes mock-transfected, or transfected with cel-miR-67, hsa-miR-590-3p or hsa-miR-199a-3p
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To identify the relevant targets of the selected miRNAs, we assessed global transcriptome changes by deep-sequencing total neonatal mouse cardiomyocyte RNA after transfection with hsa-miR-590-3p or hsa-miR-199a-3p Overall design: Four condition experiment; one replicate per condition; mouse neonatal cardiomyocytes transfected with cel-miR-67, hsa-miR-590-3p and hsa-miR-199a-3p; samples collected 72 hours after transfection

Publication Title

Functional screening identifies miRNAs inducing cardiac regeneration.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE31058
Gene expression profiling of HD-MyZ Hodgkin lymphoma cell line after in vitro and in vivo treatment with perifosine in combination with sorafenib
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Three HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice using tumor growth rates and survival as endpoints. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P .0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of cell death. In responsive cell lines, WB analysis showed that antiproliferative and pro-apototic events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P .0001) as well as mice receiving perifosine alone (49 days, P .03) or sorafenib alone (54 days, P .007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P .0001) and necrosis (2- to 8-fold, P .0001), as compared to controls or treatment with single agents. In addition, perifosine/sorafenib treatment had no effect on HDLM-2 nodules, but significantly reduced L-540 nodules with 50% tumor growth inhibition, compared to controls. CONCLUSIONS: Perifosine/sorafenib combination resulted in strong anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation of perifosine/sorafenib combined-treatment in HL patients.

Publication Title

Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE31059
Gene expression profiling of L-540 Hodgkin lymphoma cell line after in vitro and in vivo treatment with perifosine in combination with sorafenib
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Three HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice using tumor growth rates and survival as endpoints. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P .0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of cell death. In responsive cell lines, WB analysis showed that antiproliferative and pro-apototic events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P .0001) as well as mice receiving perifosine alone (49 days, P .03) or sorafenib alone (54 days, P .007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P .0001) and necrosis (2- to 8-fold, P .0001), as compared to controls or treatment with single agents. In addition, perifosine/sorafenib treatment had no effect on HDLM-2 nodules, but significantly reduced L-540 nodules with 50% tumor growth inhibition, compared to controls. CONCLUSIONS: Perifosine/sorafenib combination resulted in strong anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation of perifosine/sorafenib combined-treatment in HL patients.

Publication Title

Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE31057
Gene expression profiling of HDLM-2 Hodgkin lymphoma cell line after in vitro and in vivo treatment with perifosine in combination with sorafenib
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Three HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P .0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of cell death. In responsive cell lines, WB analysis showed that antiproliferative and pro-apototic events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P .0001) as well as mice receiving perifosine alone (49 days, P .03) or sorafenib alone (54 days, P .007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P .0001) and necrosis (2- to 8-fold, P .0001), as compared to controls or treatment with single agents. Perifosine/sorafenib combination resulted in strong anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation of perifosine/sorafenib combined-treatment in HL patients.

Publication Title

Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE77239
Expression data from young and senescent HCAECs treated with proton pump inhibitors (omeprazole and lansoprazole)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Proton pump inhibitors (PPIs) are among the most frequently prescribed drugs, especially in older people. Although these drugs are usually considered safe, recent evidence suggests that high dose and/or long term use of PPIs may have several detrimental effects, including increased risk of adverse cardiovascular events. The impact of PPI in the aging host environment still need to be characterized. Aged tissues, including vascular tissues, accumulate senescent cells that can communicate with their environment by secreting a myriad of cytokines and growth factors. Human coronary artery endothelial cells (HCAECs) provide an excellent model system to study in vitro most aspects of cardiovascular function and disease related to cellular senescence. The purpose of this study is thus to investigate the in vitro effects of two well-known PPIs (Omeprazole and Lansoprazole) on endothelial gene expression in senescent e non-senescent HCAECs.

Publication Title

Different transcriptional profiling between senescent and non-senescent human coronary artery endothelial cells (HCAECs) by Omeprazole and Lansoprazole treatment.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE57994
Expression data from HK2 proximal tubule cells transduced with shPGC-1alpha compared to cells transduced with control shRNA
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

To identify regulation of genes involved in lipid and glycogen metabolism by PGC-1alpha

Publication Title

Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon E-MEXP-239
Transcription profiling of mouse wild type immortalized fibroblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2), Affymetrix Murine Genome U74B Version 2 Array (mgu74bv2)

Description

Cultured wild-type immortalized fibroblasts transcriptome

Publication Title

JunD reduces tumor angiogenesis by protecting cells from oxidative stress.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact