We infected Drosophila S2 cells (invitrogen) with Drosophila C virus (DCV) (Multiplicity of Infection = 10), and harvested samples for further analysis at 8 and 24 hours post-infection.
The heat shock response restricts virus infection in Drosophila.
Cell line, Time
View SamplesGENES ASSOCIATED WITH THE CELL CYCLE, LINEAGE COMMITMENT AND IMMUNOMODULATORY POTENTIAL DISCRIMINATE HUMAN POSTNATAL STEM CELLS OF DIFFERENT ORIGIN.
Functional differences between mesenchymal stem cell populations are reflected by their transcriptome.
No sample metadata fields
View SamplesOrofacial clefts (OFCs) are the most frequent craniofacial birth defects. An orofacial cleft (OFC) occurs as a result of deviations in palatogenesis. Cell proliferation, differentiation, adhesion, migration and apoptosis are crucial in palatogenesis. We hypothesized that deregulation of these processes in oral keratinocytes contributes to OFC. We performed microarray expression analysis on palatal keratinocytes from OFC and non-OFC individuals. Principal component analysis showed a clear difference in gene expression with 24 and 17% for the first and second component respectively. In OFC cells, 228 genes were differentially expressed (p<0.001). Gene ontology analysis showed enrichment of genes involved in β1 integrin-mediated adhesion and migration, as well as in P-cadherin expression. A scratch assay demonstrated reduced migration of OFC keratinocytes (343.6 ± 29.62 μm) vs. non-OFC keratinocytes (503.4 ± 41.81 μm, p<0.05). Our results indicate that adhesion and migration are deregulated in OFC keratinocytes, which might contribute to OFC pathogenesis.
Deregulated Adhesion Program in Palatal Keratinocytes of Orofacial Cleft Patients.
Specimen part
View SamplesExpression profiles of anti-TNF responders were compared to profiles of anti-TNF non-responders in order to identify an expression signature for anti-TNF response
Validation study of existing gene expression signatures for anti-TNF treatment in patients with rheumatoid arthritis.
Specimen part, Disease, Disease stage, Treatment
View SamplesExpression analysis of migrating and non-migrating mesenchymal stromal cells (MSC) in fetal bone marrow
Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration.
Specimen part
View SamplesRNAi mediated knockdown of BTG1 in the acute lymphoblastic cell line RS4;11 causes this cell line to become resistant to prednisolone treatment when compared to control cells.
BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia.
Specimen part, Cell line, Treatment
View SamplesYin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth retardation, feeding problems, and various congenital malformations. Our combined clinical and molecular data define the 'YY1 syndrome' as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from person-derived cells, using antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding, with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators. Overall design: Individuals with mutations or deletion in YY1 were identified among patients with idiopathic intellectual disability. LCLs were established from 4 of these patients (1 deletion, 2 missense mutations, and 1 non-sense mutation undergoing non-sense-mediated decay) as well as from unrelated controls, and their transcriptome were compared.
YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction.
Specimen part, Subject
View SamplesWe analyzed expression changes between JAK2V617F positive bone marrow cells and JAK2V617F negative cells
Autocrine Tnf signaling favors malignant cells in myelofibrosis in a Tnfr2-dependent fashion.
Specimen part, Treatment
View SamplesTranscriptom analysis of microdissect adrenal medulla after 8 weeks of cardiac pressure overload caused by transverse aortic constriction.
Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.
Sex
View SamplesCharacterization of genes associated with adipose tissue is key to understanding the pathogenesis of obesity and developing treatments for this disorder. Differential gene expression in the adipose tissue has been described in adulthood but none studies have been developed on childhood. The purpose of this study was to compare gene expression in omental adipose tissue from obese prepubertal and normal weight children. We selected 5 obese (BMI adjusted for age and sex z score >2) and 6 normal weight children. RNA was extracted from omental adipose tissue biopsies and cRNA was hybridizated on the human genome U133 Plus 2.0 Arrays (Affymetrix). Microarray experiments were performed for each sample, and selected group of gene expression values were confirmed with real-time RT-PCR in 10 obese and 10 normal weigth prepubertal children. 1276 genes were found to be differentially expressed at P<0.05. Of those differential genes, 201 were upregulated (Fc>2) and 42 were downregulated (Fc<-2). Genes involved in metabolic and signalling pathways were altered in childhood obesity.
Genome-wide expression in visceral adipose tissue from obese prepubertal children.
Sex, Age, Specimen part
View Samples